Quasitransitive relation

1

The mathematical notion of quasitransitivity is a weakened version of transitivity that is used in social choice theory and microeconomics. Informally, a relation is quasitransitive if it is symmetric for some values and transitive elsewhere. The concept was introduced by to study the consequences of Arrow's theorem.

Formal definition

A binary relation T over a set X is quasitransitive if for all a, b, and c in X the following holds: If the relation is also antisymmetric, T is transitive. Alternately, for a relation T, define the asymmetric or "strict" part P: Then T is quasitransitive if and only if P is transitive.

Examples

Preferences are assumed to be quasitransitive (rather than transitive) in some economic contexts. The classic example is a person indifferent between 7 and 8 grams of sugar and indifferent between 8 and 9 grams of sugar, but who prefers 9 grams of sugar to 7. Similarly, the Sorites paradox can be resolved by weakening assumed transitivity of certain relations to quasitransitivity.

Properties

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article