Asymmetric relation

1

In mathematics, an asymmetric relation is a binary relation R on a set X where for all a, b \in X, if a is related to b then b is not related to a.

Formal definition

Preliminaries

A binary relation on X is any subset R of X \times X. Given a, b \in X, write a R b if and only if which means that a R b is shorthand for The expression a R b is read as "a is related to b by R."

Definition

The binary**** relation**** R is**** called**** **** if**** for all a,**** b *in*** X,**** if**** a R b is**** true**** then**** b R a is**** false;**** that**** is****,**** if**** then**** This can be written in the notation of first-order logic as A logically equivalent definition is: which in first-order logic can be written as: A relation is asymmetric if and only if it is both antisymmetric and irreflexive, so this may also be taken as a definition.

Examples

An example of an asymmetric relation is the "less than" relation ,<, between real numbers: if x < y then necessarily y is not less than x. More generally, any strict partial order is an asymmetric relation. Not all asymmetric relations are strict partial orders. An example of an asymmetric non-transitive, even antitransitive relation is the relation: if X beats Y, then Y does not beat X; and if X beats Y and Y beats Z, then X does not beat Z. Restrictions and converses of asymmetric relations are also asymmetric. For example, the restriction of ,<, from the reals to the integers is still asymmetric, and the converse or dual ,>, of ,<, is also asymmetric. An asymmetric relation need not have the connex property. For example, the strict subset relation is asymmetric, and neither of the sets {1, 2} and {3, 4} is a strict subset of the other. A relation is connex if and only if its complement is asymmetric. A non-example is the "less than or equal" relation \leq. This is not asymmetric, because reversing for example, x \leq x produces x \leq x and both are true. The less-than-or-equal relation is an example of a relation that is neither symmetric nor asymmetric, showing that asymmetry is not the same thing as "not symmetric". The empty relation is the only relation that is (vacuously) both symmetric and asymmetric.

Properties

The following conditions are sufficient for a relation R to be asymmetric:

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article