Contents
Bilinear map
In mathematics, a bilinear map is a function combining elements of two vector spaces to yield an element of a third vector space, and is linear in each of its arguments. Matrix multiplication is an example. A bilinear map can also be defined for modules. For that, see the article pairing.
Definition
Vector spaces
Let V, W and X be three vector spaces over the same base field F. A bilinear map is a function such that for all w \in W, the map B_w is a linear map from V to X, and for all v \in V, the map B_v is a linear map from W to X. In other words, when we hold the first entry of the bilinear map fixed while letting the second entry vary, the result is a linear operator, and similarly for when we hold the second entry fixed. Such a map B satisfies the following properties. If V = W and we have B(v, w) = B(w, v) for all v, w \in V, then we say that B is symmetric. If X is the base field F, then the map is called a bilinear form, which are well-studied (for example: scalar product, inner product, and quadratic form).
Modules
The definition works without any changes if instead of vector spaces over a field F, we use modules over a commutative ring R. It generalizes to n-ary functions, where the proper term is multilinear. For non-commutative rings R and S, a left R-module M and a right S-module N, a bilinear map is a map B : M × N → T with T an (R, S)-bimodule, and for which any n in N, m ↦ B(m, n) is an R-module homomorphism, and for any m in M, n ↦ B(m, n) is an S-module homomorphism. This satisfies for all m in M, n in N, r in R and s in S, as well as B being additive in each argument.
Properties
An immediate consequence of the definition is that B(v, w) = 0X whenever v = 0V or w = 0W. This may be seen by writing the zero vector 0V as 0 ⋅ 0V (and similarly for 0W) and moving the scalar 0 "outside", in front of B, by linearity. The set L(V, W; X) of all bilinear maps is a linear subspace of the space (viz. vector space, module) of all maps from V × W into X. If V, W, X are finite-dimensional, then so is L(V, W; X). For X = F, that is, bilinear forms, the dimension of this space is dim V × dim W (while the space L(V × W; F) of linear forms is of dimension dim V + dim W). To see this, choose a basis for V and W; then each bilinear map can be uniquely represented by the matrix B(ei, fj), and vice versa. Now, if X is a space of higher dimension, we obviously have dim L(V, W; X) = dim V × dim W × dim X.
Examples
Continuity and separate continuity
Suppose X, Y, and Z are topological vector spaces and let be a bilinear map. Then**** b is**** said**** to**** be**** **** if**** the following two conditions**** hold****:**** Many separately continuous bilinear that are not continuous satisfy an additional property: hypocontinuity. All continuous bilinear maps are hypocontinuous.
Sufficient conditions for continuity
Many bilinear maps that occur in practice are separately continuous but not all are continuous. We list here sufficient conditions for a separately continuous bilinear map to be continuous.
Composition map
Let be locally convex Hausdorff spaces and let be the composition map defined by In general, the bilinear map C is not continuous (no matter what topologies the spaces of linear maps are given). We do, however, have the following results: Give all three spaces of linear maps one of the following topologies:
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.