Contents
Additive map
In algebra, an additive map, Z-linear map or additive function is a function f that preserves the addition operation: for every pair of elements x and y in the domain of f. For example, any linear map is additive. When the domain is the real numbers, this is Cauchy's functional equation. For a specific case of this definition, see additive polynomial. More formally, an additive map is a \Z-module homomorphism. Since an abelian group is a \Z-module, it may be defined as a group homomorphism between abelian groups. A map that is additive in each of two arguments separately is called a bi-additive map or a \Z-bilinear map.
Examples
Typical examples include maps between rings, vector spaces, or modules that preserve the additive group. An additive map does not necessarily preserve any other structure of the object; for example, the product operation of a ring. If f and g are additive maps, then the map f + g (defined pointwise) is additive.
Properties
Definition of scalar multiplication by an integer Suppose that X is an additive group with identity element 0 and that the inverse of x \in X is denoted by -x. For any x \in X and integer n \in \Z, let: Thus and it can be shown that for all integers m, n \in \Z and all x \in X, and This definition of scalar multiplication makes the cyclic subgroup \Z x of X into a left \Z-module; if X is commutative, then it also makes X into a left \Z-module. Homogeneity over the integers If f : X \to Y is an additive map between additive groups then f(0) = 0 and for all x \in X, (where negation denotes the additive inverse) and Consequently, for all x, y \in X (where by definition, ). In other words, every additive map is homogeneous over the integers. Consequently, every additive map between abelian groups is a homomorphism of \Z-modules. Homomorphism of \Q-modules If the additive abelian groups X and Y are also a unital modules over the rationals \Q (such as real or complex vector spaces) then an additive map f : X \to Y satisfies: In other words, every additive map is homogeneous over the rational numbers. Consequently, every additive maps between unital \Q-modules is a homomorphism of \Q-modules. Despite being homogeneous over \Q, as described in the article on Cauchy's functional equation, even when X = Y = \R, it is nevertheless still possible for the additive function to be homogeneous over the real numbers; said differently, there exist additive maps that are of the form for some constant s_0 \in \R. In particular, there exist additive maps that are not linear maps.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.