Wiener sausage

1

In the mathematical field of probability, the Wiener sausage is a neighborhood of the trace of a Brownian motion up to a time t, given by taking all points within a fixed distance of Brownian motion. It can be visualized as a sausage of fixed radius whose centerline is Brownian motion. The Wiener sausage was named after Norbert Wiener by because of its relation to the Wiener process; the name is also a pun on Vienna sausage, as "Wiener" is German for "Viennese". The Wiener sausage is one of the simplest non-Markovian functionals of Brownian motion. Its applications include stochastic phenomena including heat conduction. It was first described by, and it was used by to explain results of a Bose–Einstein condensate, with proofs published by.

Definitions

The Wiener sausage Wδ(t) of radius δ and length t is the set-valued random variable on Brownian paths b (in some Euclidean space) defined by

Volume

There has been a lot of work on the behavior of the volume (Lebesgue measure) |Wδ(t)| of the Wiener sausage as it becomes thin (δ→0); by rescaling, this is essentially equivalent to studying the volume as the sausage becomes long (t→∞). showed that in 3 dimensions the expected value of the volume of the sausage is In dimension d at least 3 the volume of the Wiener sausage is asymptotic to as t tends to infinity. In dimensions 1 and 2 this formula gets replaced by and respectively. , a student of Spitzer, proved similar results for generalizations of Wiener sausages with cross sections given by more general compact sets than balls.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

View original