Contents
Variational perturbation theory
In mathematics, variational perturbation theory (VPT) is a mathematical method to convert divergent power series in a small expansion parameter, say into a convergent series in powers where \omega is a critical exponent (the so-called index of "approach to scaling" introduced by Franz Wegner). This is possible with the help of variational parameters, which are determined by optimization order by order in g. The partial sums are converted to convergent partial sums by a method developed in 1992. Most perturbation expansions in quantum mechanics are divergent for any small coupling strength g. They can be made convergent by VPT (for details see the first textbook cited below). The convergence is exponentially fast. After its success in quantum mechanics, VPT has been developed further to become an important mathematical tool in quantum field theory with its anomalous dimensions. Applications focus on the theory of critical phenomena. It has led to the most accurate predictions of critical exponents. More details can be read here.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.