Uniform boundedness principle

1

In mathematics, the uniform boundedness principle or Banach–Steinhaus theorem is one of the fundamental results in functional analysis. Together with the Hahn–Banach theorem and the open mapping theorem, it is considered one of the cornerstones of the field. In its basic form, it asserts that for a family of continuous linear operators (and thus bounded operators) whose domain is a Banach space, pointwise boundedness is equivalent to uniform boundedness in operator norm. The theorem was first published in 1927 by Stefan Banach and Hugo Steinhaus, but it was also proven independently by Hans Hahn.

Theorem

The first inequality (that is, for all x) states that the functionals in F are pointwise bounded while the second states that they are uniformly bounded. The second supremum always equals and if X is not the trivial vector space (or if the supremum is taken over [0, \infty] rather than ) then closed unit ball can be replaced with the unit sphere The completeness of the Banach space X enables the following short proof, using the Baire category theorem. There are also simple proofs not using the Baire theorem.

Corollaries

The above corollary does claim that T_n converges to T in operator norm, that is, uniformly on bounded sets. However, since is bounded in operator norm, and the limit operator T is continuous, a standard "" estimate shows that T_n converges to T uniformly on sets. Indeed, the elements of S define a pointwise bounded family of continuous linear forms on the Banach space X := Y', which is the continuous dual space of Y. By the uniform boundedness principle, the norms of elements of S, as functionals on X, that is, norms in the second dual Y'', are bounded. But for every s \in S, the norm in the second dual coincides with the norm in Y, by a consequence of the Hahn–Banach theorem. Let L(X, Y) denote the continuous operators from X to Y, endowed with the operator norm. If the collection F is unbounded in L(X, Y), then the uniform boundedness principle implies: In fact, R is dense in X. The complement of R in X is the countable union of closed sets By the argument used in proving the theorem, each X_n is nowhere dense, i.e. the subset \bigcup X_n is. Therefore R is the complement of a subset of first category in a Baire space. By definition of a Baire space, such sets (called or ) are dense. Such reasoning leads to the, which can be formulated as follows:

Example: pointwise convergence of Fourier series

Let \mathbb{T} be the circle, and let be the Banach space of continuous functions on \mathbb{T}, with the uniform norm. Using the uniform boundedness principle, one can show that there exists an element in for which the Fourier series does not converge pointwise. For its Fourier series is defined by and the N-th symmetric partial sum is where D_N is the N-th Dirichlet kernel. Fix and consider the convergence of The functional defined by is bounded. The norm of in the dual of is the norm of the signed measure namely It can be verified that So the collection is unbounded in the dual of Therefore, by the uniform boundedness principle, for any the set of continuous functions whose Fourier series diverges at x is dense in More can be concluded by applying the principle of condensation of singularities. Let be a dense sequence in \mathbb{T}. Define in the similar way as above. The principle of condensation of singularities then says that the set of continuous functions whose Fourier series diverges at each x_m is dense in (however, the Fourier series of a continuous function f converges to f(x) for almost every by Carleson's theorem).

Generalizations

In a topological vector space (TVS) X, "bounded subset" refers specifically to the notion of a von Neumann bounded subset. If X happens to also be a normed or seminormed space, say with (semi)norm |\cdot|, then a subset B is (von Neumann) bounded if and only if it is, which by definition means

Barrelled spaces

Attempts to find classes of locally convex topological vector spaces on which the uniform boundedness principle holds eventually led to barrelled spaces. That is, the least restrictive setting for the uniform boundedness principle is a barrelled space, where the following generalized version of the theorem holds :

Uniform boundedness in topological vector spaces

A family \mathcal{B} of subsets of a topological vector space Y is said to be in Y, if there exists some bounded subset D of Y such that which happens if and only if is a bounded subset of Y; if Y is a normed space then this happens if and only if there exists some real M \geq 0 such that In particular, if H is a family of maps from X to Y and if then the family is uniformly bounded in Y if and only if there exists some bounded subset D of Y such that which happens if and only if is a bounded subset of Y.

Generalizations involving nonmeager subsets

Although the notion of a nonmeager set is used in the following version of the uniform bounded principle, the domain X is assumed to be a Baire space. Every proper vector subspace of a TVS X has an empty interior in X. So in particular, every proper vector subspace that is closed is nowhere dense in X and thus of the first category (meager) in X (and the same is thus also true of all its subsets). Consequently, any vector subspace of a TVS X that is of the second category (nonmeager) in X must be a dense subset of X (since otherwise its closure in X would a closed proper vector subspace of X and thus of the first category).

Sequences of continuous linear maps

The following theorem establishes conditions for the pointwise limit of a sequence of continuous linear maps to be itself continuous. If in addition the domain is a Banach space and the codomain is a normed space then

Complete metrizable domain

proves a weaker form of this theorem with Fréchet spaces rather than the usual Banach spaces.

Citations

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article