Uncanny valley

1

The uncanny valley (不気味の谷) effect is a hypothesized psychological and aesthetic relation between an object's degree of resemblance to a human being and the emotional response to the object. Examples of the phenomenon exist among robotics, 3D computer animations and lifelike dolls. The increasing prevalence of digital technologies (e.g., virtual reality, augmented reality, and photorealistic computer animation) has propagated discussions and citations of the "valley"; such conversation has enhanced the construct's verisimilitude. The uncanny valley hypothesis predicts that an entity appearing almost human will risk eliciting eerie feelings in viewers.

Etymology

As related to robotics engineering, robotics professor Masahiro Mori first introduced the concept in 1970 from his book titled Bukimi No Tani (不気味の谷), phrasing it as bukimi no tani genshō (不気味の谷現象). Bukimi no tani was translated literally as uncanny valley in the 1978 book Robots: Fact, Fiction, and Prediction written by Jasia Reichardt. Over time, this translation created an unintended association of the concept to Ernst Jentsch's psychoanalytic concept of the uncanny established in his 1906 essay On the Psychology of the Uncanny, which was then critiqued and extended in Sigmund Freud's 1919 essay The Uncanny.

Hypothesis

Mori's original hypothesis states that as the appearance of a robot is made more human, some observers' emotional response to the robot becomes increasingly positive and empathetic, until it becomes almost human, at which point the response quickly becomes strong revulsion. However, as the robot's appearance continues to become less distinguishable from that of a human being, the emotional response becomes positive once again and approaches human-to-human empathy levels. When plotted on a graph, the reactions are indicated by a steep decrease followed by a steep increase (hence the "valley" part of the name) in the areas where anthropomorphism is closest to reality. This interval of repulsive response aroused by a robot with appearance and motion between a "somewhat human" and "fully human" entity is the uncanny valley effect. The name represents the idea that an almost human-looking robot seems overly "strange" to some human beings, produces a feeling of uncanniness, and thus fails to evoke the empathic response required for productive human–robot interaction.

Theoretical basis

A number of theories have been proposed to explain the cognitive mechanism causing the phenomenon:

Research

A series of studies experimentally investigated whether uncanny valley effects exist for static images of robot faces. Mathur MB & Reichling DB used two complementary sets of stimuli spanning the range from very mechanical to very human-like: first, a sample of 80 objectively chosen robot face images from Internet searches, and second, a morphometrically and graphically controlled 6-face series set of faces. They asked subjects to explicitly rate the likability of each face. To measure trust toward each face, subjects completed an investment game to measure indirectly how much money they were willing to "wager" on a robot's trustworthiness. Both stimulus sets showed a robust uncanny valley effect on explicitly rated likability and a more context-dependent uncanny valley on implicitly rated trust. Their exploratory analysis of one proposed mechanism for the uncanny valley, perceptual confusion at a category boundary, found that category confusion occurs in the uncanny valley but does not mediate the effect on social and emotional responses. One study conducted in 2009 examined the evolutionary mechanism behind the aversion associated with the uncanny valley. A group of five monkeys were shown three images: two different 3D monkey faces (realistic, unrealistic), and a real photo of a monkey's face. The monkeys' eye-gaze was used as a proxy for preference or aversion. Since the realistic 3D monkey face was looked at less than either the real photo, or the unrealistic 3D monkey face, this was interpreted as an indication that the monkey participants found the realistic 3D face aversive, or otherwise preferred the other two images. As one would expect with the uncanny valley, more realism can result in less positive reactions, and this study demonstrated that neither human-specific cognitive processes, nor human culture explain the uncanny valley. In other words, this aversive reaction to realism can be said to be evolutionary in origin. , researchers at University of California, San Diego and California Institute for Telecommunications and Information Technology were measuring human brain activations related to the uncanny valley. In one study using fMRI, a group of cognitive scientists and roboticists found the biggest differences in brain responses for uncanny robots in parietal cortex, on both sides of the brain, specifically in the areas that connect the part of the brain's visual cortex that processes bodily movements with the section of the motor cortex thought to contain mirror neurons. The researchers say they saw, in essence, evidence of mismatch or perceptual conflict. The brain "lit up" when the human-like appearance of the android and its robotic motion "didn't compute". Ayşe Pınar Saygın, an assistant professor from UCSD, stated that "The brain doesn't seem selectively tuned to either biological appearance or biological motion per se. What it seems to be doing is looking for its expectations to be met – for appearance and motion to be congruent." Viewer perception of facial expression and speech and the uncanny valley in realistic, human-like characters intended for video games and movies is being investigated by Tinwell et al., 2011. Consideration is also given by Tinwell et al. (2010) as to how the uncanny may be exaggerated for antipathetic characters in survival horror games. Building on the body of work already performed for android science, this research intends to build a conceptual mapping of the uncanny valley using 3D characters generated in a real-time gaming engine. The goal is to analyze how cross-modal factors of facial expression and speech can exaggerate the uncanny. Tinwell et al., 2011 have also introduced the notion of an 'unscalable' uncanny wall that suggests that a viewer's discernment for detecting imperfections in realism will keep pace with new technologies in simulating realism. A summary of Angela Tinwell's research on the uncanny valley, psychological reasons behind the uncanny valley and how designers may overcome the uncanny in human-like virtual characters is provided in her book, The Uncanny Valley in Games and Animation by CRC Press. Studies in 2015 and 2018 observed that autistic individuals were less affected by the uncanny valley, and autistic children even not at all. The suspected causes were their reduced sensibility for subtle facial changes and limited visual experiences due to diminished social motivation. In return, the social ostracism of autistics may be caused by the uncanny valley effect in the neurotypical society. The effort of autistic individuals to appear neurotypical may thereby be misinterpreted as neurotypical people behaving atypically "creepy". Outing or improved masking may help autistic individuals in such cases.

Design principles

A number of design principles have been proposed for avoiding the uncanny valley:

Criticism

A number of criticisms have been raised concerning whether the uncanny valley exists as a unified phenomenon amenable to scientific scrutiny:

Similar effects

If the uncanny valley effect is the result of general cognitive processes, there should be evidence in evolutionary history and cultural artifacts. An effect similar to the uncanny valley was noted by Charles Darwin in 1839: "The expression of this [ Trigonocephalus ] snake's face was hideous and fierce; the pupil consisted of a vertical slit in a mottled and coppery iris; the jaws were broad at the base, and the nose terminated in a triangular projection. I do not think I ever saw anything more ugly, excepting, perhaps, some of the vampire bats. I imagine this repulsive aspect originates from the features being placed in positions, with respect to each other, somewhat proportional to the human face; and thus we obtain a scale of hideousness." A similar "uncanny valley" effect could, according to the ethical-futurist writer Jamais Cascio, show up when humans begin modifying themselves with transhuman enhancements (cf. body modification), which aim to improve the abilities of the human body beyond what would normally be possible, be it eyesight, muscle strength, or cognition. So long as these enhancements remain within a perceived norm of human behavior, a negative reaction is unlikely, but once individuals supplant normal human variety, revulsion can be expected. However, according to this theory, once such technologies gain further distance from human norms, "transhuman" individuals would cease to be judged on human levels and instead be regarded as separate entities altogether (this point is what has been dubbed "posthuman"), and it is here that acceptance would rise once again out of the uncanny valley. Another example comes from "pageant retouching" photos, especially of children, which some find disturbingly doll-like.

In visual effects

A number of movies that use computer-generated imagery to show characters have been described by reviewers as giving a feeling of revulsion or "creepiness" as a result of the characters looking too realistic. Examples include the following:

Virtual actors

An increasingly common practice is to feature virtual actors in movies: CGI likenesses of real actors used because the original actor either looks too old for the part or is deceased. Sometimes a virtual actor is created with involvement from the original actor (who may contribute motion capture, audio, etc.), while at other times the actor has no involvement. Reviewers have often criticized the use of virtual actors for its uncanny valley effect, saying it adds an eerie feeling to the movie. Examples of virtual actors that have received such criticism include replicas of Arnold Schwarzenegger in Terminator Salvation (2009) and Terminator Genisys (2015), Jeff Bridges in Tron: Legacy (2010), Peter Cushing and Carrie Fisher in Rogue One (2016), and Will Smith in Gemini Man (2019).

Citations

General and cited sources

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article