Touchard polynomials

1

The Touchard polynomials, studied by, also called the exponential polynomials or Bell polynomials, comprise a polynomial sequence of binomial type defined by where is a Stirling number of the second kind, i.e., the number of partitions of a set of size n into k disjoint non-empty subsets. The first few Touchard polynomials are

Properties

Basic properties

The value at 1 of the nth Touchard polynomial is the nth Bell number, i.e., the number of partitions of a set of size n: If X is a random variable with a Poisson distribution with expected value λ, then its nth moment is E(Xn) = Tn(λ), leading to the definition: Using this fact one can quickly prove that this polynomial sequence is of binomial type, i.e., it satisfies the sequence of identities: The Touchard polynomials constitute the only polynomial sequence of binomial type with the coefficient of x equal 1 in every polynomial. The Touchard polynomials satisfy the Rodrigues-like formula: The Touchard polynomials satisfy the recurrence relation and In the case x = 1, this reduces to the recurrence formula for the Bell numbers. A generalization of both this formula and the definition, is a generalization of Spivey's formula Using the umbral notation Tn(x)=Tn(x), these formulas become: The generating function of the Touchard polynomials is which corresponds to the generating function of Stirling numbers of the second kind. Touchard polynomials have contour integral representation:

Zeroes

All zeroes of the Touchard polynomials are real and negative. This fact was observed by L. H. Harper in 1967. The absolute value of the leftmost zero is bounded from above by although it is conjectured that the leftmost zero grows linearly with the index n. The Mahler measure M(T_n) of the Touchard polynomials can be estimated as follows: where \Omega_n and K_n are the smallest of the maximum two k indices such that and are maximal, respectively.

Generalizations

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article