Tertiary ideal

1

In mathematics, a tertiary ideal is a two-sided ideal in a perhaps noncommutative ring that cannot be expressed as a nontrivial intersection of a right fractional ideal with another ideal. Tertiary ideals generalize primary ideals to the case of noncommutative rings. Although primary decompositions do not exist in general for ideals in noncommutative rings, tertiary decompositions do, at least if the ring is Noetherian. Every primary ideal is tertiary. Tertiary ideals and primary ideals coincide for commutative rings. To any (two-sided) ideal, a tertiary ideal can be associated called the tertiary radical, defined as Then t(I) always contains I. If R is a (not necessarily commutative) Noetherian ring and I a right ideal in R, then I has a unique irredundant decomposition into tertiary ideals

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article