Sublinear function

1

In linear algebra, a sublinear function (or functional as is more often used in functional analysis), also called a quasi-seminorm or a Banach functional, on a vector space X is a real-valued function with only some of the properties of a seminorm. Unlike seminorms, a sublinear function does not have to be nonnegative-valued and also does not have to be absolutely homogeneous. Seminorms are themselves abstractions of the more well known notion of norms, where a seminorm has all the defining properties of a norm that it is not required to map non-zero vectors to non-zero values. In functional analysis the name Banach functional is sometimes used, reflecting that they are most commonly used when applying a general formulation of the Hahn–Banach theorem. The notion of a sublinear function was introduced by Stefan Banach when he proved his version of the Hahn-Banach theorem. There is also a different notion in computer science, described below, that also goes by the name "sublinear function."

Definitions

Let X be a vector space over a field \mathbb{K}, where \mathbb{K} is either the real numbers \Reals or complex numbers \C. A real-valued function on X is called a ' (or a ' if ), and also sometimes called a ' or a ', if it has these two properties:

<ol> <li>[Positive homogeneity](https://bliptext.com/articles/positive-homogeneity)****/****[Nonnegative homogeneity](https://bliptext.com/articles/nonnegative-homogeneity): for all real r \geq 0 and all x \in X. <li>[Subadditivity](https://bliptext.com/articles/subadditivity)****/****[Triangle inequality](https://bliptext.com/articles/triangle-inequality): for all x, y \in X. <****/****ol> A function is called or if p(x) \geq 0 for all x \in X, although some authors define to instead mean that p(x) \neq 0 whenever x \neq 0; these definitions are not equivalent. It is a if for all x \in X. Every subadditive symmetric function is necessarily nonnegative. A sublinear function on a real vector space is [symmetric](https://bliptext.com/articles/) if and only if it is a [seminorm](https://bliptext.com/articles/seminorm). A sublinear function on a real or complex vector space is a seminorm if and only if it is a [balanced function](https://bliptext.com/articles/balanced-function) or equivalently, if and only if for every [unit length](https://bliptext.com/articles/unit-length) scalar u (satisfying |u| = 1) and every x \in X. The set of all sublinear functions on X, denoted by X^{\#}, can be [partially ordered](https://bliptext.com/articles/partial-order) by declaring p \leq q if and only if for all x \in X. A sublinear function is called if it is a [minimal element](https://bliptext.com/articles/minimal-element) of X^{\#} under this order. A sublinear function is minimal if and only if it is a real [linear functional](https://bliptext.com/articles/linear-functional).

Examples and sufficient conditions

Every norm, seminorm, and real linear functional is a sublinear function. The identity function on X := \Reals is an example of a sublinear function (in fact, it is even a linear functional) that is neither positive nor a seminorm; the same is true of this map's negation More generally, for any real a \leq b, the map is a sublinear function on X := \Reals and moreover, every sublinear function is of this form; specifically, if and b := p(1) then a \leq b and If p and q are sublinear functions on a real vector space X then so is the map More generally, if \mathcal{P} is any non-empty collection of sublinear functionals on a real vector space X and if for all x \in X, then q is a sublinear functional on X. A function which is subadditive, convex, and satisfies p(0) \leq 0 is also positively homogeneous (the latter condition p(0) \leq 0 is necessary as the example of on shows). If p is positively homogeneous, it is convex if and only if it is subadditive. Therefore, assuming p(0) \leq 0, any two properties among subadditivity, convexity, and positive homogeneity implies the third.

Properties

Every sublinear function is a convex function: For If is a sublinear function on a vector space X then for every x \in X, which implies that at least one of p(x) and p(-x) must be nonnegative; that is, for every x \in X, Moreover, when is a sublinear function on a real vector space then the map defined by is a seminorm. Subadditivity of guarantees that for all vectors x, y \in X, so if p is also symmetric then the reverse triangle inequality will hold for all vectors x, y \in X, Defining then subadditivity also guarantees that for all x \in X, the value of p on the set is constant and equal to p(x). In particular, if is a vector subspace of X then and the assignment which will be denoted by \hat{p}, is a well-defined real-valued sublinear function on the quotient space that satisfies If p is a seminorm then \hat{p} is just the usual canonical norm on the quotient space Adding b c to both sides of the hypothesis (where ) and combining that with the conclusion gives which yields many more inequalities, including, for instance, in which an expression on one side of a strict inequality ,<, can be obtained from the other by replacing the symbol c with \mathbf{z} (or vice versa) and moving the closing parenthesis to the right (or left) of an adjacent summand (all other symbols remain fixed and unchanged).

Associated seminorm

If is a real-valued sublinear function on a real vector space X (or if X is complex, then when it is considered as a real vector space) then the map defines a seminorm on the real vector space X called the seminorm associated with p. A sublinear function p on a real or complex vector space is a symmetric function if and only if p = q where as before. More generally, if is a real-valued sublinear function on a (real or complex) vector space X then will define a seminorm on X if this supremum is always a real number (that is, never equal to \infty).

Relation to linear functionals

If p is a sublinear function on a real vector space X then the following are equivalent:

<ol> <li>p is a [linear functional](https://bliptext.com/articles/linear-functional).</li> <li>for every x \in X, </li> <li>for every x \in X, </li> <li>p is a minimal sublinear function.</li> </ol> If p is a sublinear function on a real vector space X then there exists a linear functional f on X such that f \leq p. If X is a real vector space, f is a linear functional on X, and p is a positive sublinear function on X, then f \leq p on X if and only if

Dominating a linear functional

A real-valued function f defined on a subset of a real or complex vector space X is said to be a sublinear function p if for every x that belongs to the domain of f. If is a real linear functional on X then f is dominated by p (that is, f \leq p) if and only if Moreover, if p is a seminorm or some other (which by definition means that holds for all x) then f \leq p if and only if |f| \leq p.

Continuity

Suppose X is a topological vector space (TVS) over the real or complex numbers and p is a sublinear function on X. Then the following are equivalent:

<ol> <li>p is continuous;</li> <li>p is continuous at 0;</li> <li>p is uniformly continuous on X;</li> </ol> and if p is positive then this list may be extended to include: <li> is open in X.</li> </ol> If X is a real TVS, f is a linear functional on X, and p is a continuous sublinear function on X, then f \leq p on X implies that f is continuous.

Relation to Minkowski functions and open convex sets

Relation to open convex sets

Operators

The concept can be extended to operators that are homogeneous and subadditive. This requires only that the codomain be, say, an ordered vector space to make sense of the conditions.

Computer science definition

In computer science, a function is called sublinear if or in asymptotic notation (notice the small o). Formally, if and only if, for any given c > 0, there exists an N such that f(n) < c n for n \geq N. That is, f grows slower than any linear function. The two meanings should not be confused: while a Banach functional is convex, almost the opposite is true for functions of sublinear growth: every function can be upper-bounded by a concave function of sublinear growth.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article