Contents
Stokes stream function
In fluid dynamics, the Stokes stream function is used to describe the streamlines and flow velocity in a three-dimensional incompressible flow with axisymmetry. A surface with a constant value of the Stokes stream function encloses a streamtube, everywhere tangential to the flow velocity vectors. Further, the volume flux within this streamtube is constant, and all the streamlines of the flow are located on this surface. The velocity field associated with the Stokes stream function is solenoidal—it has zero divergence. This stream function is named in honor of George Gabriel Stokes.
Cylindrical coordinates
Consider a cylindrical coordinate system ( ρ, φ , z ), with the z–axis the line around which the incompressible flow is axisymmetrical, φ the azimuthal angle and ρ the distance to the z–axis. Then the flow velocity components uρ and uz can be expressed in terms of the Stokes stream function \Psi by: The azimuthal velocity component uφ does not depend on the stream function. Due to the axisymmetry, all three velocity components ( uρ, uφ , uz ) only depend on ρ and z and not on the azimuth φ. The volume flux, through the surface bounded by a constant value ψ of the Stokes stream function, is equal to 2π ψ.
Spherical coordinates
In spherical coordinates ( r, θ , φ ), r is the radial distance from the origin, θ is the zenith angle and φ is the azimuthal angle. In axisymmetric flow, with θ = 0 the rotational symmetry axis, the quantities describing the flow are again independent of the azimuth φ. The flow velocity components ur and uθ are related to the Stokes stream function \Psi through: Again, the azimuthal velocity component uφ is not a function of the Stokes stream function ψ. The volume flux through a stream tube, bounded by a surface of constant ψ, equals 2π ψ, as before.
Vorticity
The vorticity is defined as: with the unit vector in the \phi,–direction. !Derivation of vorticity using a Stokes stream function From the definition of the curl in spherical coordinates: First notice that the r and \theta components are equal to 0. Secondly substitute u_r and u_\theta into The result is: Next the following algebra is performed: As a result, from the calculation the vorticity vector is found to be equal to:
Comparison with cylindrical
The cylindrical and spherical coordinate systems are related through
Alternative definition with opposite sign
As explained in the general stream function article, definitions using an opposite sign convention – for the relationship between the Stokes stream function and flow velocity – are also in use.
Zero divergence
In cylindrical coordinates, the divergence of the velocity field u becomes: as expected for an incompressible flow. And in spherical coordinates:
Streamlines as curves of constant stream function
From calculus it is known that the gradient vector \nabla \Psi is normal to the curve \Psi = C (see e.g. Level set). If it is shown that everywhere using the formula for in terms of \Psi, then this proves that level curves of \Psi are streamlines. In cylindrical coordinates, and So that And in spherical coordinates and So that
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.