Størmer number

1

In mathematics, a Størmer number or arc-cotangent irreducible number is a positive integer n for which the greatest prime factor of n^2+1 is greater than or equal to 2n. They are named after Carl Størmer.

Sequence

The first few Størmer numbers are:

Density

John Todd proved that this sequence is neither finite nor cofinite. More precisely, the natural density of the Størmer numbers lies between 0.5324 and 0.905. It has been conjectured that their natural density is the natural logarithm of 2, approximately 0.693, but this remains unproven. Because the Størmer numbers have positive density, the Størmer numbers form a large set.

Application

The Størmer numbers arise in connection with the problem of representing the Gregory numbers (arctangents of rational numbers) as sums of Gregory numbers for integers (arctangents of unit fractions). The Gregory number G_{a/b} may be decomposed by repeatedly multiplying the Gaussian integer a+bi by numbers of the form n\pm i, in order to cancel prime factors p from the imaginary part; here n is chosen to be a Størmer number such that n^2+1 is divisible by p.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article