Spin stabilization

1

In aerospace engineering, spin stabilization is a method of stabilizing a satellite or launch vehicle by means of spin, i.e. rotation along the longitudinal axis. The concept originates from conservation of angular momentum as applied to ballistics, where the spin is commonly obtained by means of rifling. For most satellite applications this approach has been superseded by three-axis stabilization.

Use

Spin-stabilization is used on rockets and spacecraft where attitude control is required without the requirement for on-board 3-axis propulsion or mechanisms, and sensors for attitude control and pointing. On rockets with a solid motor upper stage, spin stabilization is used to keep the motor from drifting off course as they don't have their own thrusters. Usually small rockets are used to spin up the spacecraft and rocket then fire the rocket and send the craft off. Rockets and spacecraft that use spin stabilization: Despinning can be achieved by various techniques, including yo-yo de-spin. With advancements in attitude control propulsion systems, guidance systems, and the needs for satellites to point instruments and communications systems precisely, 3-axis attitude control has become much more common than spin-stabilization for systems operating in space.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article