Solar power in Germany

1

Solar power accounted for an estimated 12.2% of electricity production in Germany in 2023, up from 1.9% in 2010 and less than 0.1% in 2000. Germany has been among the world's top PV installer for several years, with total installed capacity amounting to 81.8 gigawatts (GW) at the end of 2023. Germany's 974 watts of solar PV per capita (2023) is the third highest in the world, behind only Australia and the Netherlands. Germany's official government plans are to continuously increase renewables' contribution to the country's overall electricity consumption; current targets are 80% renewable electricity by 2030 and full decarbonization before 2040. Concentrated solar power (CSP), a solar power technology that does not use photovoltaics, has virtually no significance for Germany, as this technology demands much higher solar insolation. There is, however, a 1.5MW experimental CSP-plant used for on-site engineering purposes rather than for commercial electricity generation, the Jülich Solar Tower owned by the German Aerospace Center. Germany's largest solar farms are located in Meuro, Neuhardenberg, and Templin with capacities over 100 MW. According to the Fraunhofer Institute for Solar Energy Systems, in 2022, Germany generated 60.8 TWh from solar power, or 11% of Germany's gross electricity consumption. The country is increasingly producing more electricity at specific times with high solar irradiation than it needs, driving down spot-market prices and exporting its surplus of electricity to its neighbouring countries, with a record exported surplus of 34 TWh in 2014. A decline in spot-prices may however raise the electricity prices for retail customers, as the spread of the guaranteed feed-in tariff and spot-price increases as well. As the combined share of fluctuating wind and solar is approaching 17 per cent on the national electricity mix, other issues are becoming more pressing and others more feasible. These include adapting the electrical grid, constructing new grid-storage capacity, dismantling and altering fossil and nuclear power plants and to construct a new generation of combined heat and power plants.

History

During the Reagan administration in the United States, oil prices decreased and the US removed most of its policies that supported its solar industry. Government subsidies were higher in Germany (as well as Japan), which prompted the solar industry supply chain to begin moving from the US to those countries. Germany was one of the first countries to deploy grid-scale PV power. In 2004, Germany was the first country, together with Japan, to reach 1 GW of cumulative installed PV capacity. Since 2004 solar power in Germany has been growing considerably due to the country's feed-in tariffs for renewable energy, which were introduced by the German Renewable Energy Sources Act, and declining PV costs. Prices of PV systems/solar power system decreased more than 50% in the 5 years since 2006. By 2011, solar PV provided 18 TWh of Germany's electricity, or about 3% of the total. That year the federal government set a target of 66 GW of installed solar PV capacity by 2030, to be reached with an annual increase of 2.5–3.5 GW, and a goal of 80% of electricity from renewable sources by 2050. More than 7 GW of PV capacity were installed annually during the record years of 2010, 2011 and 2012. For this period, the installed capacity of 22.5 GW represented almost 30% of the worldwide deployed photovoltaics. Since 2013, the number of new installations declined significantly due to more restrictive governmental policies. About 1.5 million photovoltaic systems were installed around the country in 2014, ranging from small rooftop systems, to medium commercial and large utility-scale solar parks. It's estimated that by 2017 over 70% of the country's jobs in the solar industry have been lost in the solar sector in recent years. Proponents from the PV industry blame the lack of governmental commitment, while others point out the financial burden associated with the fast-paced roll-out of photovoltaics, rendering the transition to renewable energies unsustainable in their view. A boom in small, residential balcony-mounted solar systems has been reported in the early 2020s.

Governmental policies

Germany introduced its feed-in tariff in 2000 and it later became a model for solar industry policy support in other countries. , the feed-in tariff costs about €14 billion (US$18 billion) per year for wind and solar installations. The cost is spread across all rate-payers in a surcharge of 3.6 €ct (4.6 ¢) per kWh (approximately 15% of the total domestic cost of electricity). On the other hand, as expensive peak power plants are displaced, the price at the power exchange is reduced due to the so-called merit order effect. Germany set a world record for solar power production with 25.8 GW produced at midday on 20 and 21 April 2015. According to the solar power industry, a feed-in tariff is the most effective means of developing solar power. It is the same as a power purchase agreement, but is at a much higher rate. As the industry matures, it is reduced and becomes the same as a power purchase agreement. A feed-in tariff allows investors a guaranteed return on investment – a requirement for development. A primary difference between a tax credit and a feed-in tariff is that the cost is borne the year of installation with a tax credit, and is spread out over many years with a feed-in tariff. In both cases the incentive cost is distributed over all consumers. This means that the initial cost is very low for a feed-in tariff and very high for a tax credit. In both cases the learning curve reduces the cost of installation, but is not a large contribution to growth, as grid parity is still always reached. Since the end of the boom period, national PV market has since declined significantly, due to the amendments in the German Renewable Energy Sources Act (EEG) that reduced feed-in tariffs and set constraints on utility-scaled installations, limiting their size to no more than 10 kW. The previous version of the EEG only guaranteed financial assistance as long as the PV capacity had not yet reached 52 GW. This limit has now been removed. It also foresees to regulate annual PV growth within a range of 2.5 GW to 3.5 GW by adjusting the guaranteed fees accordingly. The legislative reforms stipulates a 40 to 45 per cent share from renewable energy sources by 2025 and a 55 to 60 per cent share by 2035. , tenants in North Rhine-Westphalia (NRW) will soon be able to benefit from the PV panels mounted on the buildings in which they live. The state government has introduced measures covering the self-consumption of power, allowing tenants to acquire the electricity generated onsite more cheaply than their regular utility contracts stipulate. Germany subsidizes the installation of solar capacity.

Grid capacity and stability issues

In 2017, approximately 9 GW of photovoltaic plants in Germany were being retrofitted to shut down if the frequency increases to 50.2 Hz, indicating an excess of electricity on the grid. The frequency is unlikely to reach 50.2 Hz during normal operation, but can if Germany is exporting power to countries that suddenly experience a power failure. This leads to a surplus of generation in Germany, that is transferred to rotating load and generation, which causes system frequency to rise. This happened in 2003 and 2006. However, power failures could not have been caused by photovoltaics in 2006, as solar PV played a negligible role in the German energy mix at that time. In December 2012, the president of Germany's "Bundesnetzagentur", the Federal Network Agency, stated that there is "no indication", that the switch to renewables is causing more power outages. Amory Lovins from the Rocky Mountain Institute wrote about the German Energiewende in 2013, calling the discussion about grid stability a "disinformation campaign".

Potential

Germany has about the same solar potential as Alaska, which has an average of 3.08 sun hours/day in Fairbanks. Bremen Sun Hours/day (Avg = 2.92 hrs/day) Stuttgart Sun Hours/day (Avg = 3.33 hrs/day) Source: NREL, based on an average of 30 years of weather data.

Statistics

The history of Germany's installed photovoltaic capacity, its average power output, produced electricity, and its share in the overall consumed electricity, showed a steady, exponential growth for more than two decades up to about 2012. Solar PV capacity doubled on average every 18 months in this period; an annual growth rate of more than 50 per cent. Since about 2012 growth has slowed down significantly.

Generation

Source: Federal Ministry for Economic Affairs and Energy, for capacity figures and other figures. Note: This table does not show net consumption but gross electricity consumption, which includes self-consumption of nuclear and coal-fire power plants. In 2014, net consumption stood at about 6.9% (vs. 6.1% for gross consumption).

Solar PV by type

It is interesting to note that whilst large power plants receive a lot of attention in solar power articles, installations under 0.5 MW in size actually represented nearly two-thirds of the installed capacity in Germany in 2017.

PV capacity by federal states

Germany is made up of sixteen, partly sovereign federal states or Länder. The southern states of Bavaria and Baden-Württemberg account for about half of the total, nationwide PV deployment and are also the wealthiest and most populous states after North Rhine-Westphalia. However, photovoltaic installations are widespread throughout the sixteen states and are not limited to the southern region of the country as demonstrated by a watts per capita distribution.

Photovoltaic power stations

Largest photovoltaic power stations

Other notable photovoltaic stations

Gallery

Companies

Some companies have collapsed since 2008, facing harsh competition from imported solar panels. Some were taken over like Bosch Solar Energy by SolarWorld. Major German solar companies include:

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article