Contents
Slutsky's theorem
In probability theory, Slutsky's theorem extends some properties of algebraic operations on convergent sequences of real numbers to sequences of random variables. The theorem was named after Eugen Slutsky. Slutsky's theorem is also attributed to Harald Cramér.
Statement
Let X_n, Y_n be sequences of scalar/vector/matrix random elements. If X_n converges in distribution to a random element X and Y_n converges in probability to a constant c, then where denotes convergence in distribution. Notes:
Proof
This theorem follows from the fact that if Xn converges in distribution to X and Yn converges in probability to a constant c, then the joint vector (Xn, Yn) converges in distribution to (X, c) (see here). Next we apply the continuous mapping theorem, recognizing the functions g(x,y) = x + y, g(x,y) = xy, and g(x,y) = x y−1 are continuous (for the last function to be continuous, y has to be invertible).
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.