Contents
Skorokhod's embedding theorem
In mathematics and probability theory, Skorokhod's embedding theorem is either or both of two theorems that allow one to regard any suitable collection of random variables as a Wiener process (Brownian motion) evaluated at a collection of stopping times. Both results are named for the Ukrainian mathematician A. V. Skorokhod.
Skorokhod's first embedding theorem
Let X be a real-valued random variable with expected value 0 and finite variance; let W denote a canonical real-valued Wiener process. Then there is a stopping time (with respect to the natural filtration of W), τ, such that Wτ has the same distribution as X, and
Skorokhod's second embedding theorem
Let X1, X2, ... be a sequence of independent and identically distributed random variables, each with expected value 0 and finite variance, and let Then there is a sequence of stopping times τ1 ≤ τ2 ≤ ... such that the have the same joint distributions as the partial sums Sn and τ1, τ2 − τ1, τ3 − τ2, ... are independent and identically distributed random variables satisfying and
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.