Self-interacting dark matter

1

In astrophysics and particle physics, self-interacting dark matter (SIDM) is an alternative class of dark matter particles which have strong interactions, in contrast to the standard cold dark matter model (CDM). SIDM was postulated in 2000 as a solution to the core-cusp problem. In the simplest models of DM self-interactions, a Yukawa-type potential and a force carrier φ mediates between two dark matter particles. On galactic scales, DM self-interaction leads to energy and momentum exchange between DM particles. Over cosmological time scales this results in isothermal cores in the central region of dark matter haloes. If the self-interacting dark matter is in hydrostatic equilibrium, its pressure and density follow: where \Phi_{\chi} and \Phi_{b} are the gravitational potential of the dark matter and a baryon respectively. The equation naturally correlates the dark matter distribution to that of the baryonic matter distribution. With this correlation, the self-interacting dark matter can explain phenomena such as the Tully–Fisher relation. Self-interacting dark matter has also been postulated as an explanation for the DAMA annual modulation signal. Moreover, it is shown that it can serve the seed of supermassive black holes at high redshift. SIDM may have originated in a so-called "Dark Big Bang". In July 2024 a study proposed SIDM solves the "final-parsec problem", two months later another study proposed the same with fuzzy cold dark matter.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article