Contents
Seismic tomography
Seismic tomography or seismotomography is a technique for imaging the subsurface of the Earth using seismic waves. The properties of seismic waves are modified by the material through which they travel. By comparing the differences in seismic waves recorded at different locations, it is possible to create a model of the subsurface structure. Most commonly, these seismic waves are generated by earthquakes or man-made sources such as explosions. Different types of waves, including P, S, Rayleigh, and Love waves can be used for tomographic images, though each comes with their own benefits and downsides and are used depending on the geologic setting, seismometer coverage, distance from nearby earthquakes, and required resolution. The model created by tomographic imaging is almost always a seismic velocity model, and features within this model may be interpreted as structural, thermal, or compositional variations. Geoscientists apply seismic tomography to a wide variety of settings in which the subsurface structure is of interest, ranging in scale from whole-Earth structure to the upper few meters below the surface.
Theory
Tomography is solved as an inverse problem. Seismic data are compared to an initial Earth model and the model is modified until the best possible fit between the model predictions and observed data is found. Seismic waves would travel in straight lines if Earth was of uniform composition, but structural, chemical, and thermal variations affect the properties of seismic waves, most importantly their velocity, leading to the reflection and refraction of these waves. The location and magnitude of variations in the subsurface can be calculated by the inversion process, although solutions to tomographic inversions are non-unique. Most commonly, only the travel time of the seismic waves is considered in the inversion. However, advances in modeling techniques and computing power have allowed different parts, or the entirety, of the measured seismic waveform to be fit during the inversion. Seismic tomography is similar to medical x-ray computed tomography (CT scan) in that a computer processes receiver data to produce a 3D image, although CT scans use attenuation instead of travel-time difference. Seismic tomography has to deal with the analysis of curved ray paths which are reflected and refracted within the Earth, and potential uncertainty in the location of the earthquake hypocenter. CT scans use linear x-rays and a known source.
History
In the early 20th century, seismologists first used travel time variations in seismic waves from earthquakes to make discoveries such as the existence of the Moho and the depth to the outer core. While these findings shared some underlying principles with seismic tomography, modern tomography itself was not developed until the 1970s with the expansion of global seismic networks. Networks like the World-Wide Standardized Seismograph Network were initially motivated by underground nuclear tests, but quickly showed the benefits of their accessible, standardized datasets for geoscience. These developments occurred concurrently with advancements in modeling techniques and computing power that were required to solve large inverse problems and generate theoretical seismograms, which are required to test the accuracy of a model. As early as 1972, researchers successfully used some of the underlying principles of modern seismic tomography to search for fast and slow areas in the subsurface. The first widely cited publication that largely resembles modern seismic tomography was published in 1976 and used local earthquakes to determine the 3D velocity structure beneath Southern California. The following year, P wave delay times were used to create 2D velocity maps of the whole Earth at several depth ranges, representing an early 3D model. The first model using iterative techniques, which improve upon an initial model in small steps and are required when there are a large number of unknowns, was done in 1984. The model was made possible by iterating upon the first radially anisotropic Earth model, created in 1981. A radially anisotropic Earth model describes changes in material properties, specifically seismic velocity, along a radial path through the Earth, and assumes this profile is valid for every path from the core to the surface. This 1984 study was also the first to apply the term "tomography" to seismology, as the term had originated in the medical field with X-ray tomography. Seismic tomography has continued to improve in the past several decades since its initial conception. The development of adjoint inversions, which are able to combine several different types of seismic data into a single inversion, help negate some of the trade-offs associated with any individual data type. Historically, seismic waves have been modeled as 1D rays, a method referred to as "ray theory" that is relatively simple to model and can usually fit travel-time data well. However, recorded seismic waveforms contain much more information than just travel-time and are affected by a much wider path than is assumed by ray theory. Methods like the finite-frequency method attempt to account for this within the framework of ray theory. More recently, the development of "full waveform" or "waveform" tomography has abandoned ray theory entirely. This method models seismic wave propagation in its full complexity and can yield more accurate images of the subsurface. Originally these inversions were developed in exploration seismology in the 1980s and 1990s and were too computationally complex for global and regional scale studies, but development of numerical modeling methods to simulate seismic waves has allowed waveform tomography to become more common.
Process
Seismic tomography uses seismic records to create 2D and 3D models of the subsurface through an inverse problem that minimizes the difference between the created model and the observed seismic data. Various methods are used to resolve anomalies in the crust, lithosphere, mantle, and core based on the availability of data and types of seismic waves that pass through the region. Longer wavelengths penetrate deeper into the Earth, but seismic waves are not sensitive to features significantly smaller than their wavelength and therefore provide a lower resolution. Different methods also make different assumptions, which can have a large effect on the image created. For example, commonly used tomographic methods work by iteratively improving an initial input model, and thus can produce unrealistic results if the initial model is unreasonable. P wave data are used in most local models and global models in areas with sufficient earthquake and seismograph density. S and surface wave data are used in global models when this coverage is not sufficient, such as in ocean basins and away from subduction zones. First-arrival times are the most widely used, but models utilizing reflected and refracted phases are used in more complex models, such as those imaging the core. Differential traveltimes between wave phases or types are also used.
Local tomography
Local tomographic models are often based on a temporary seismic array targeting specific areas, unless in a seismically active region with extensive permanent network coverage. These allow for the imaging of the crust and upper mantle.
Regional or global tomography
Regional to global scale tomographic models are generally based on long wavelengths. Various models have better agreement with each other than local models due to the large feature size they image, such as subducted slabs and superplumes. The trade off from whole mantle to whole Earth coverage is the coarse resolution (hundreds of kilometers) and difficulty imaging small features (e.g. narrow plumes). Although often used to image different parts of the subsurface, P and S wave derived models broadly agree where there is image overlap. These models use data from both permanent seismic stations and supplementary temporary arrays.
Applications
Seismic tomography can resolve anisotropy, anelasticity, density, and bulk sound velocity. Variations in these parameters may be a result of thermal or chemical differences, which are attributed to processes such as mantle plumes, subducting slabs, and mineral phase changes. Larger scale features that can be imaged with tomography include the high velocities beneath continental shields and low velocities under ocean spreading centers.
Hotspots
The mantle plume hypothesis proposes that areas of volcanism not readily explained by plate tectonics, called hotspots, are a result of thermal upwelling within the mantle. Some researchers have proposed an upper mantle source above the 660km discontinuity for these plumes, while others propose a much deeper source, possibly at the core-mantle boundary. While the source of mantle plumes has been highly debated since they were first proposed in the 1970s, most modern studies argue in favor of mantle plumes originating at or near the core-mantle boundary. This is in large part due to tomographic images that reveal both the plumes themselves as well as large low-velocity zones in the deep mantle that likely contribute to the formation of mantle plumes. These large low-shear velocity provinces as well as smaller ultra low velocity zones have been consistently observed across many tomographic models of the deep Earth
Subduction Zones
Subducting plates are colder than the mantle into which they are moving. This creates a fast anomaly that is visible in tomographic images. Tomographic images have been made of most subduction zones around the world and have provided insight into the geometries of the crust and upper mantle in these areas. These images have revealed that subducting plates vary widely in how steeply they move into the mantle. Tomographic images have also seen features such as deeper portions of the subducting plate tearing off from the upper portion.
Other Applications
Tomography can be used to image faults to better understand their seismic hazard. This can be through imaging the fault itself by seeing differences in seismic velocity across the fault boundary or by determining near-surface velocity structure, which can have a large impact on the magnitude on the amplitude of ground-shaking during an earthquake due to site amplification effects. Near-surface velocity structure from tomographic images can also be useful for other hazards, such as monitoring of landslides for changes in near-surface moisture content which has an effect on both seismic velocity and potential for future landslides. Tomographic images of volcanoes have yielded new insights into properties of the underlying magmatic system. These images have most commonly been used to estimate the depth and volume of magma stored in the crust, but have also been used to constrain properties such as the geometry, temperature, or chemistry of the magma. It is important to note that both lab experiments and tomographic imaging studies have shown that recovering these properties from seismic velocity alone can be difficult due to the complexity of seismic wave propagation through focused zones of hot, potentially melted rocks. While comparatively primitive to tomography on Earth, seismic tomography has been proposed on other bodies in the solar system and successfully used on the Moon. Data collected from four seismometers placed by the Apollo missions have been used many times to create 1-D velocity profiles for the moon, and less commonly 3-D tomographic models. Tomography relies on having multiple seismometers, but tomography-adjacent methods for constraining Earth structure have been used on other planets. While on Earth these methods are often used in combination with seismic tomography models to better constrain the locations of subsurface features, they can still provide useful information about the interiors of other planetary bodies when only a single seismometer is available. For example, data gathered by the SEIS (Seismic Experiment for Interior Structure) instrument on InSight on Mars has been able to detect the Martian core.
Limitations
Global seismic networks have expanded steadily since the 1960s, but are still concentrated on continents and in seismically active regions. Oceans, particularly in the southern hemisphere, are under-covered. Temporary seismic networks have helped improve tomographic models in regions of particular interest, but typically only collect data for months to a few years. The uneven distribution of earthquakes biases tomographic models towards seismically active regions. Methods that do not rely on earthquakes such as active source surveys or ambient noise tomography have helped image areas with little to no seismicity, though these both have their own limitations as compared to earthquake-based tomography. The type of seismic wave used in a model limits the resolution it can achieve. Longer wavelengths are able to penetrate deeper into the Earth, but can only be used to resolve large features. Finer resolution can be achieved with surface waves, with the trade off that they cannot be used in models deeper than the crust and upper mantle. The disparity between wavelength and feature scale causes anomalies to appear of reduced magnitude and size in images. P and S wave models respond differently to the types of anomalies. Models based solely on the wave that arrives first naturally prefer faster pathways, causing models based on these data to have lower resolution of slow (often hot) features. This can prove to be a significant issue in areas such as volcanoes where rocks are much hotter than their surroundings and oftentimes partially melted. Shallow models must also consider the significant lateral velocity variations in continental crust. Because seismometers have only been deployed in large numbers since the late-20th century, tomography is only capable of viewing changes in velocity structure over decades. For example, tectonic plates only move at millimeters per year, so the total amount of change in geologic structure due to plate tectonics since the development of seismic tomography is several orders of magnitude lower than the finest resolution possible with modern seismic networks. However, seismic tomography has still been used to view near-surface velocity structure changes at time scales of years to months. Tomographic solutions are non-unique. Although statistical methods can be used to analyze the validity of a model, unresolvable uncertainty remains. This contributes to difficulty comparing the validity of different model results. Computing power limits the amount of seismic data, number of unknowns, mesh size, and iterations in tomographic models. This is of particular importance in ocean basins, which due to limited network coverage and earthquake density require more complex processing of distant data. Shallow oceanic models also require smaller model mesh size due to the thinner crust. Tomographic images are typically presented with a color ramp representing the strength of the anomalies. This has the consequence of making equal changes appear of differing magnitude based on visual perceptions of color, such as the change from orange to red being more subtle than blue to yellow. The degree of color saturation can also visually skew interpretations. These factors should be considered when analyzing images.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.