Contents
Schlick's approximation
In 3D computer graphics, Schlick’s approximation, named after Christophe Schlick, is a formula for approximating the contribution of the Fresnel factor in the specular reflection of light from a non-conducting interface (surface) between two media. According to Schlick’s model, the specular reflection coefficient R can be approximated by: where where \theta is half the angle between the incoming and outgoing light directions. And n_1,,n_2 are the indices of refraction of the two media at the interface and R_0 is the reflection coefficient for light incoming parallel to the normal (i.e., the value of the Fresnel term when \theta = 0 or minimal reflection). In computer graphics, one of the interfaces is usually air, meaning that n_1 very well can be approximated as 1. In microfacet models it is assumed that there is always a perfect reflection, but the normal changes according to a certain distribution, resulting in a non-perfect overall reflection. When using Schlick’s approximation, the normal in the above computation is replaced by the halfway vector. Either the viewing or light direction can be used as the second vector.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.