Contents
Saint-Venant's theorem
In solid mechanics, it is common to analyze the properties of beams with constant cross section. Saint-Venant's theorem states that the simply connected cross section with maximal torsional rigidity is a circle. It is named after the French mathematician Adhémar Jean Claude Barré de Saint-Venant. Given a simply connected domain D in the plane with area A, \rho the radius and \sigma the area of its greatest inscribed circle, the torsional rigidity P of D is defined by Here the supremum is taken over all the continuously differentiable functions vanishing on the boundary of D. The existence of this supremum is a consequence of Poincaré inequality. Saint-Venant conjectured in 1856 that of all domains D of equal area A the circular one has the greatest torsional rigidity, that is A rigorous proof of this inequality was not given until 1948 by Pólya. Another proof was given by Davenport and reported in. A more general proof and an estimate is given by Makai.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.