Restricted sumset

1

In additive number theory and combinatorics, a restricted sumset has the form where are finite nonempty subsets of a field F and is a polynomial over F. If P is a constant non-zero function, for example for any, then S is the usual sumset which is denoted by nA if When S is written as which is denoted by if Note that |S| > 0 if and only if there exist with

Cauchy–Davenport theorem

The Cauchy–Davenport theorem, named after Augustin Louis Cauchy and Harold Davenport, asserts that for any prime p and nonempty subsets A and B of the prime order cyclic group we have the inequality where, i.e. we're using modular arithmetic. It can be generalised to arbitrary (not necessarily abelian) groups using a Dyson transform. If A, B are subsets of a group G, then where p(G) is the size of the smallest nontrivial subgroup of G (we set it to 1 if there is no such subgroup). We may use this to deduce the Erdős–Ginzburg–Ziv theorem: given any sequence of 2n−1 elements in the cyclic group, there are n elements that sum to zero modulo n. (Here n does not need to be prime.) A direct consequence of the Cauchy-Davenport theorem is: Given any sequence S of p−1 or more nonzero elements, not necessarily distinct, of, every element of can be written as the sum of the elements of some subsequence (possibly empty) of S. Kneser's theorem generalises this to general abelian groups.

Erdős–Heilbronn conjecture

The Erdős–Heilbronn conjecture posed by Paul Erdős and Hans Heilbronn in 1964 states that if p is a prime and A is a nonempty subset of the field Z/pZ. This was first confirmed by J. A. Dias da Silva and Y. O. Hamidoune in 1994 who showed that where A is a finite nonempty subset of a field F, and p(F) is a prime p if F is of characteristic p, and p(F) = ∞ if F is of characteristic 0. Various extensions of this result were given by Noga Alon, M. B. Nathanson and I. Ruzsa in 1996, Q. H. Hou and Zhi-Wei Sun in 2002, and G. Karolyi in 2004.

Combinatorial Nullstellensatz

A powerful tool in the study of lower bounds for cardinalities of various restricted sumsets is the following fundamental principle: the combinatorial Nullstellensatz. Let be a polynomial over a field F. Suppose that the coefficient of the monomial in is nonzero and is the total degree of. If are finite subsets of F with |A_i|>k_i for, then there are such that. This tool was rooted in a paper of N. Alon and M. Tarsi in 1989, and developed by Alon, Nathanson and Ruzsa in 1995–1996, and reformulated by Alon in 1999.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article