Contents
Remez algorithm
The Remez algorithm or Remez exchange algorithm, published by Evgeny Yakovlevich Remez in 1934, is an iterative algorithm used to find simple approximations to functions, specifically, approximations by functions in a Chebyshev space that are the best in the uniform norm L∞ sense. It is sometimes referred to as Remes algorithm or Reme algorithm. A typical example of a Chebyshev space is the subspace of Chebyshev polynomials of order n in the space of real continuous functions on an interval, C[a, b]. The polynomial of best approximation within a given subspace is defined to be the one that minimizes the maximum absolute difference between the polynomial and the function. In this case, the form of the solution is precised by the equioscillation theorem.
Procedure
The Remez algorithm starts with the function f to be approximated and a set X of n + 2 sample points in the approximation interval, usually the extrema of Chebyshev polynomial linearly mapped to the interval. The steps are: The result is called the polynomial of best approximation or the minimax approximation algorithm. A review of technicalities in implementing the Remez algorithm is given by W. Fraser.
Choice of initialization
The Chebyshev nodes are a common choice for the initial approximation because of their role in the theory of polynomial interpolation. For the initialization of the optimization problem for function f by the Lagrange interpolant Ln(f), it can be shown that this initial approximation is bounded by with the norm or Lebesgue constant of the Lagrange interpolation operator Ln of the nodes (t1, ..., tn + 1) being T being the zeros of the Chebyshev polynomials, and the Lebesgue functions being Theodore A. Kilgore, Carl de Boor, and Allan Pinkus proved that there exists a unique ti for each Ln, although not known explicitly for (ordinary) polynomials. Similarly,, and the optimality of a choice of nodes can be expressed as For Chebyshev nodes, which provides a suboptimal, but analytically explicit choice, the asymptotic behavior is known as ( γ being the Euler–Mascheroni constant) with and upper bound Lev Brutman obtained the bound for n \ge 3, and \hat{T} being the zeros of the expanded Chebyshev polynomials: Rüdiger Günttner obtained from a sharper estimate for n \ge 40
Detailed discussion
This section provides more information on the steps outlined above. In this section, the index i runs from 0 to n+1. Step 1: Given, solve the linear system of n+2 equations It should be clear that (-1)^i E in this equation makes sense only if the nodes are ordered, either strictly increasing or strictly decreasing. Then this linear system has a unique solution. (As is well known, not every linear system has a solution.) Also, the solution can be obtained with only O(n^2) arithmetic operations while a standard solver from the library would take O(n^3) operations. Here is the simple proof: Compute the standard n-th degree interpolant p_1(x) to f(x) at the first n+1 nodes and also the standard n-th degree interpolant p_2(x) to the ordinates (-1)^i To this end, use each time Newton's interpolation formula with the divided differences of order 0, ...,n and O(n^2) arithmetic operations. The polynomial p_2(x) has its i-th zero between x_{i-1} and, and thus no further zeroes between x_n and x_{n+1}: p_2(x_n) and have the same sign (-1)^n. The linear combination is also a polynomial of degree n and This is the same as the equation above for and for any choice of E. The same equation for i = n+1 is As mentioned above, the two terms in the denominator have same sign: E and thus are always well-defined. The error at the given n+2 ordered nodes is positive and negative in turn because The theorem of de La Vallée Poussin states that under this condition no polynomial of degree n exists with error less than E. Indeed, if such a polynomial existed, call it \tilde p(x), then the difference would still be positive/negative at the n+2 nodes x_i and therefore have at least n+1 zeros which is impossible for a polynomial of degree n. Thus, this E is a lower bound for the minimum error which can be achieved with polynomials of degree n. Step 2 changes the notation from to p(x). Step 3 improves upon the input nodes and their errors \pm E as follows. In each P-region, the current node x_i is replaced with the local maximizer \bar{x}_i and in each N-region x_i is replaced with the local minimizer. (Expect \bar{x}_0 at A, the \bar {x}_i near x_i, and at B.) No high precision is required here, the standard line search with a couple of quadratic fits should suffice. (See ) Let. Each amplitude |z_i| is greater than or equal to E. The Theorem of de La Vallée Poussin and its proof also apply to with as the new lower bound for the best error possible with polynomials of degree n. Moreover, comes in handy as an obvious upper bound for that best possible error. Step 4: With and as lower and upper bound for the best possible approximation error, one has a reliable stopping criterion: repeat the steps until is sufficiently small or no longer decreases. These bounds indicate the progress.
Variants
Some modifications of the algorithm are present on the literature. These include:
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.