Contents
Ramberg–Osgood relationship
The Ramberg–Osgood equation was created to describe the nonlinear relationship between stress and strain—that is, the stress–strain curve—in materials near their yield points. It is especially applicable to metals that harden with plastic deformation (see work hardening), showing a smooth elastic-plastic transition. As it is a phenomenological model, checking the fit of the model with actual experimental data for the particular material of interest is essential. In its original form, the equation for strain (deformation) is here The equation is essentially assuming the elastic strain portion of the stress-strain curve,, can be modeled with a line, while the plastic portion, , can be modeled with a power law. The elastic and plastic components are summed to find the total strain. The first term on the right side,, is equal to the elastic part of the strain, while the second term, , accounts for the plastic part, the parameters K and n describing the hardening behavior of the material. Introducing the yield strength of the material, \sigma_0, and defining a new parameter, \alpha, related to K as, it is convenient to rewrite the term on the extreme right side as follows: Replacing in the first expression, the Ramberg–Osgood equation can be written as
Hardening behavior and yield offset
In the last form of the Ramberg–Osgood model, the hardening behavior of the material depends on the material constants \alpha, and n,. Due to the power-law relationship between stress and plastic strain, the Ramberg–Osgood model implies that plastic strain is present even for very low levels of stress. Nevertheless, for low applied stresses and for the commonly used values of the material constants \alpha and n, the plastic strain remains negligible compared to the elastic strain. On the other hand, for stress levels higher than \sigma_0, plastic strain becomes progressively larger than elastic strain. The value can be seen as a yield offset, as shown in figure 1. This comes from the fact that, when. Accordingly, (see Figure 1): Commonly used values for n, are ~5 or greater, although more precise values are usually obtained by fitting of tensile (or compressive) experimental data. Values for \alpha, can also be found by means of fitting to experimental data, although for some materials, it can be fixed in order to have the yield offset equal to the accepted value of strain of 0.2%, which means:
Alternative Formulations
Several slightly different alternative formulations of the Ramberg-Osgood equation can be found. As the models are purely empirical, it is often useful to try different models and check which has the best fit with the chosen material. The Ramberg-Osgood equation can also be expressed using the Hollomon parameters where K is the strength coefficient (Pa) and n is the strain hardening coefficient (no units). Alternatively, if the yield stress, \sigma_y, is assumed to be at the 0.2% offset strain, the following relationship can be derived. Note that n is again as defined in the original Ramberg-Osgood equation and is the inverse of the Hollomon's strain hardening coefficient.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.