Radial function

1

In mathematics, a radial function is a real-valued function defined on a Euclidean space \R^n whose value at each point depends only on the distance between that point and the origin. The distance is usually the Euclidean distance. For example, a radial function Φ in two dimensions has the form where φ is a function of a single non-negative real variable. Radial functions are contrasted with spherical functions, and any descent function (e.g., continuous and rapidly decreasing) on Euclidean space can be decomposed into a series consisting of radial and spherical parts: the solid spherical harmonic expansion. A function is radial if and only if it is invariant under all rotations leaving the origin fixed. That is, f is radial if and only if for all ρ ∈ SO(n) , the special orthogonal group in n dimensions. This characterization of radial functions makes it possible also to define radial distributions. These are distributions S on \R^n such that for every test function φ and rotation ρ. Given any (locally integrable) function f, its radial part is given by averaging over spheres centered at the origin. To wit, where ωn−1 is the surface area of the (n−1)-sphere Sn−1 , and r = , x′ = x/r . It follows essentially by Fubini's theorem that a locally integrable function has a well-defined radial part at almost every r. The Fourier transform of a radial function is also radial, and so radial functions play a vital role in Fourier analysis. Furthermore, the Fourier transform of a radial function typically has stronger decay behavior at infinity than non-radial functions: for radial functions bounded in a neighborhood of the origin, the Fourier transform decays faster than R−(n−1)/2 . The Bessel functions are a special class of radial function that arise naturally in Fourier analysis as the radial eigenfunctions of the Laplacian; as such they appear naturally as the radial portion of the Fourier transform.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article