Proj construction

1

In algebraic geometry, Proj is a construction analogous to the spectrum-of-a-ring construction of affine schemes, which produces objects with the typical properties of projective spaces and projective varieties. The construction, while not functorial, is a fundamental tool in scheme theory. In this article, all rings will be assumed to be commutative and with identity.

Proj of a graded ring

Proj as a set

Let S be a commutative graded ring, whereis the direct sum decomposition associated with the gradation. The irrelevant ideal of S is the ideal of elements of positive degreeWe say an ideal is homogeneous if it is generated by homogeneous elements. Then, as a set, For brevity we will sometimes write X for.

Proj as a topological space

We may define a topology, called the Zariski topology, on by defining the closed sets to be those of the form where a is a homogeneous ideal of S. As in the case of affine schemes it is quickly verified that the V(a) form the closed sets of a topology on X. Indeed, if are a family of ideals, then we have and if the indexing set I is finite, then Equivalently, we may take the open sets as a starting point and define A common shorthand is to denote D(Sf) by D(f), where Sf is the ideal generated by f. For any ideal a, the sets D(a) and V(a) are complementary, and hence the same proof as before shows that the sets D(a) form a topology on. The advantage of this approach is that the sets D(f), where f ranges over all homogeneous elements of the ring S, form a base for this topology, which is an indispensable tool for the analysis of, just as the analogous fact for the spectrum of a ring is likewise indispensable.

Proj as a scheme

We also construct a sheaf on, called the “structure sheaf” as in the affine case, which makes it into a scheme. As in the case of the Spec construction there are many ways to proceed: the most direct one, which is also highly suggestive of the construction of regular functions on a projective variety in classical algebraic geometry, is the following. For any open set U of (which is by definition a set of homogeneous prime ideals of S not containing S_+) we define the ring O_X(U) to be the set of all functions (where S_{(p)} denotes the subring of the ring of fractions S_p consisting of fractions of homogeneous elements of the same degree) such that for each prime ideal p of U: It follows immediately from the definition that the O_X(U) form a sheaf of rings O_X on, and it may be shown that the pair (, O_X) is in fact a scheme (this is accomplished by showing that each of the open subsets D(f) is in fact an affine scheme).

The sheaf associated to a graded module

The essential property of S for the above construction was the ability to form localizations S_{(p)} for each prime ideal p of S. This property is also possessed by any graded module M over S, and therefore with the appropriate minor modifications the preceding section constructs for any such M a sheaf, denoted \tilde{M}, of O_X-modules on. This sheaf is quasicoherent by construction. If S is generated by finitely many elements of degree 1 (e.g. a polynomial ring or a homogenous quotient of it), all quasicoherent sheaves on arise from graded modules by this construction. The corresponding graded module is not unique.

The twisting sheaf of Serre

A special case of the sheaf associated to a graded module is when we take M to be S itself with a different grading: namely, we let the degree d elements of M be the degree (d+1) elements of S, soand denote M = S(1). We then obtain \tilde{M} as a quasicoherent sheaf on, denoted O_X(1) or simply , called the twisting sheaf of Serre. It can be checked that is in fact an invertible sheaf. One reason for the utility of is that it recovers the algebraic information of S that was lost when, in the construction of O_X, we passed to fractions of degree zero. In the case Spec A for a ring A, the global sections of the structure sheaf form A itself, whereas the global sections of here form only the degree-zero elements of S. If we define then each contains the degree-n information about S, denoted S_n, and taken together they contain all the grading information that was lost. Likewise, for any sheaf of graded -modules N we define and expect this “twisted” sheaf to contain grading information about N. In particular, if N is the sheaf associated to a graded S-module M we likewise expect it to contain lost grading information about M. This suggests, though erroneously, that S can in fact be reconstructed from these sheaves; ashowever, this is true in the case that S is a polynomial ring, below. This situation is to be contrasted with the fact that the spec functor is adjoint to the global sections functor in the category of locally ringed spaces.

Projective n-space

If A is a ring, we define projective n-space over A to be the scheme The grading on the polynomial ring is defined by letting each x_i have degree one and every element of A, degree zero. Comparing this to the definition of, above, we see that the sections of are in fact linear homogeneous polynomials, generated by the x_i themselves. This suggests another interpretation of, namely as the sheaf of “coordinates” for , since the x_i are literally the coordinates for projective n-space.

Examples of Proj

Proj over the affine line

If we let the base ring be, thenhas a canonical projective morphism to the affine line whose fibers are elliptic curves except at the points where the curves degenerate into nodal curves. So there is a fibrationwhich is also a smooth morphism of schemes (which can be checked using the Jacobian criterion).

Projective hypersurfaces and varieties

The projective hypersurface is an example of a Fermat quintic threefold which is also a Calabi–Yau manifold. In addition to projective hypersurfaces, any projective variety cut out by a system of homogeneous polynomialsin (n+1)-variables can be converted into a projective scheme using the proj construction for the graded algebragiving an embedding of projective varieties into projective schemes.

Weighted projective space

Weighted projective spaces can be constructed using a polynomial ring whose variables have non-standard degrees. For example, the weighted projective space corresponds to taking of the ring where X_0, X_1 have weight 1 while X_2 has weight 2.

Bigraded rings

The proj construction extends to bigraded and multigraded rings. Geometrically, this corresponds to taking products of projective schemes. For example, given the graded ringswith the degree of each generator 1. Then, the tensor product of these algebras over \mathbb{C} gives the bigraded algebrawhere the X_i have weight (1,0) and the Y_i have weight (0,1). Then the proj construction giveswhich is a product of projective schemes. There is an embedding of such schemes into projective space by taking the total graded algebrawhere a degree (a,b) element is considered as a degree (a+b) element. This means the k-th graded piece of S_\bullet is the moduleIn addition, the scheme now comes with bigraded sheaves which are the tensor product of the sheaves whereand are the canonical projections coming from the injections of these algebras from the tensor product diagram of commutative algebras.

Global Proj

A generalization of the Proj construction replaces the ring S with a sheaf of algebras and produces, as the result, a scheme which might be thought of as a fibration of Proj's of rings. This construction is often used, for example, to construct projective space bundles over a base scheme.

Assumptions

Formally, let X be any scheme and S be a sheaf of graded O_X-algebras (the definition of which is similar to the definition of O X-modules on a locally ringed space): that is, a sheaf with a direct sum decomposition where each S_i is an O_X-module such that for every open subset U of X, S(U) is an O_X(U)-algebra and the resulting direct sum decomposition is a grading of this algebra as a ring. Here we assume that S_0 = O_X. We make the additional assumption that S is a quasi-coherent sheaf; this is a “consistency” assumption on the sections over different open sets that is necessary for the construction to proceed.

Construction

In this setup we may construct a scheme and a “projection” map p onto X such that for every open affine U of X, This definition suggests that we construct by first defining schemes Y_U for each open affine U, by setting and maps, and then showing that these data can be glued together “over” each intersection of two open affines U and V to form a scheme Y which we define to be. It is not hard to show that defining each p_U to be the map corresponding to the inclusion of O_X(U) into S(U) as the elements of degree zero yields the necessary consistency of the p_U, while the consistency of the Y_U themselves follows from the quasi-coherence assumption on S.

The twisting sheaf

If S has the additional property that S_1 is a coherent sheaf and locally generates S over S_0 (that is, when we pass to the stalk of the sheaf S at a point x of X, which is a graded algebra whose degree-zero elements form the ring O_{X,x} then the degree-one elements form a finitely-generated module over O_{X,x} and also generate the stalk as an algebra over it) then we may make a further construction. Over each open affine U, Proj S(U) bears an invertible sheaf O(1), and the assumption we have just made ensures that these sheaves may be glued just like the Y_U above; the resulting sheaf on is also denoted O(1) and serves much the same purpose for as the twisting sheaf on the Proj of a ring does.

Proj of a quasi-coherent sheaf

Let \mathcal E be a quasi-coherent sheaf on a scheme X. The sheaf of symmetric algebras is naturally a quasi-coherent sheaf of graded O_X-modules, generated by elements of degree 1. The resulting scheme is denoted by. If \mathcal E is of finite type, then its canonical morphism is a projective morphism. For any x\in X, the fiber of the above morphism over x is the projective space associated to the dual of the vector space over k(x). If \mathcal S is a quasi-coherent sheaf of graded O_X-modules, generated by and such that is of finite type, then is a closed subscheme of and is then projective over X. In fact, every closed subscheme of a projective is of this form.

Projective space bundles

As a special case, when \mathcal E is locally free of rank n+1, we get a projective bundle over X of relative dimension n. Indeed, if we take an open cover of X by open affines such that when restricted to each of these, \mathcal E is free over A, then and hence is a projective space bundle. Many families of varieties can be constructed as subschemes of these projective bundles, such as the Weierstrass family of elliptic curves. For more details, see the main article.

Example of Global Proj

Global proj can be used to construct Lefschetz pencils. For example, let and take homogeneous polynomials of degree k. We can consider the ideal sheaf of and construct global proj of this quotient sheaf of algebras. This can be described explicitly as the projective morphism.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article