Pentagonal gyrobicupola

1

The pentagonal gyrobicupola is a polyhedron that is constructed by attaching two pentagonal cupolas base-to-base, each of its cupolas is twisted at 36°. It is an example of a Johnson solid and a composite polyhedron.

Construction

The pentagonal gyrobicupola is a composite polyhedron: it is constructed by attaching two pentagonal cupolas base-to-base. This construction is similar to the pentagonal orthobicupola; the difference is that one of cupolas in the pentagonal gyrobicupola is twisted at 36°, as suggested by the prefix gyro-. The resulting polyhedron has the same faces as the pentagonal orthobicupola does: those cupolas cover their decagonal bases, replacing it with eight equilateral triangles, eight squares, and two regular pentagons. A convex polyhedron in which all of its faces are regular polygons is the Johnson solid. The pentagonal gyrobicupola has such these, enumerating it as the thirty-first Johnson solid J_{31}.

Properties

Because it has a similar construction as the pentagonal orthobicupola, the surface area of a pentagonal gyrobicupola A is the sum of polygonal faces' area, and its volume V is twice the volume of a pentagonal cupola for which slicing it into those:

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article