Contents
NASBA (molecular biology)
Nucleic acid sequence-based amplification, commonly referred to as NASBA, is a method in molecular biology which is used to produce multiple copies of single stranded RNA. NASBA is a two-step process that takes RNA and anneals specially designed primers, then utilizes an enzyme cocktail to amplify it.
Background
Nucleic acid amplification is a technique used to produce several copies of a specific segment of RNA/DNA. Amplified RNA and DNA can be used for a variety of applications, such as genotyping, sequencing, and detection of bacteria or viruses. There are two different types of amplification, non-isothermal and isothermal. Non-isothermal amplification produces multiple copies of RNA/DNA through reiterative cycling between different temperatures. Isothermal amplification produces multiple copies of RNA/DNA at a constant reaction temperature. NASBA takes single stranded RNA, anneals primers to it at 65°C, and then amplifies it at 41°C to produce multiple copies of single stranded RNA. In order for successful amplification to occur, an enzyme cocktail containing, Avian Myeloblastosis Reverse Transcriptase (AMV-RT), RNase H, and RNA polymerase is used. AMV-RT synthesizes a complementary DNA strand (cDNA) from the RNA template once the primer is annealed. RNase H then degrades the RNA template and the other primer binds to the cDNA to form double stranded DNA, which RNA polymerase uses to synthesize copies of RNA. One key aspect of NASBA is that the starting material and end product is always single stranded RNA. That being said, it can be used to amplify DNA, but the DNA must be translated into RNA in order for successful amplification to occur. Loop-mediated isothermal amplification (LAMP) is another isothermal amplification technique.
History
NASBA was developed by J Compton in 1991, who defined it as "a primer-dependent technology that can be used for the continuous amplification of nucleic acids in a single mixture at one temperature". Immediately after the invention of NASBA it was used for the rapid diagnosis and quantification of HIV-1 in patient sera. Although RNA can also be amplified by PCR using a reverse transcriptase (in order to synthesize a complementary DNA strand as a template), NASBA's main advantage is that it works under isothermal conditions – usually at a constant temperature of 41 °C or two different temperatures, depending on the primers and enzymes used. Even when two different temperatures are applied, it is still considered isothermal, because it does not cycle back and forth between those temperatures. NASBA can be used in medical diagnostics as an alternative to PCR that is quicker and more sensitive in some circumstances.
Procedure
Explained briefly, NASBA works as follows:
Clinical applications
The NASBA technique has been used to develop rapid diagnostic tests for several pathogenic viruses with single-stranded RNA genomes, e.g. influenza A, zika virus, foot-and-mouth disease virus, severe acute respiratory syndrome (SARS)-associated coronavirus, human bocavirus (HBoV) and also parasites like Trypanosoma brucei. Recently, NASBA reaction with fluoresce, dipstick and next generation sequencing readout has been developed for COVID-19 diagnosis.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.