Multiplier ideal

1

In commutative algebra, the multiplier ideal associated to a sheaf of ideals over a complex variety and a real number c consists (locally) of the functions h such that is locally integrable, where the fi are a finite set of local generators of the ideal. Multiplier ideals were independently introduced by (who worked with sheaves over complex manifolds rather than ideals) and, who called them adjoint ideals. Multiplier ideals are discussed in the survey articles, , and.

Algebraic geometry

In algebraic geometry, the multiplier ideal of an effective \mathbb{Q}-divisor measures singularities coming from the fractional parts of D. Multiplier ideals are often applied in tandem with vanishing theorems such as the Kodaira vanishing theorem and the Kawamata–Viehweg vanishing theorem. Let X be a smooth complex variety and D an effective \mathbb{Q}-divisor on it. Let be a log resolution of D (e.g., Hironaka's resolution). The multiplier ideal of D is where K_{X'/X} is the relative canonical divisor:. It is an ideal sheaf of. If D is integral, then.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article