Module homomorphism

1

In algebra, a module homomorphism is a function between modules that preserves the module structures. Explicitly, if M and N are left modules over a ring R, then a function f: M \to N is called an R-module homomorphism or an R-linear map if for any x, y in M and r in R, In other words, f is a group homomorphism (for the underlying additive groups) that commutes with scalar multiplication. If M, N are right R-modules, then the second condition is replaced with The preimage of the zero element under f is called the kernel of f. The set of all module homomorphisms from M to N is denoted by. It is an abelian group (under pointwise addition) but is not necessarily a module unless R is commutative. The composition of module homomorphisms is again a module homomorphism, and the identity map on a module is a module homomorphism. Thus, all the (say left) modules together with all the module homomorphisms between them form the category of modules.

Terminology

A module homomorphism is called a module isomorphism if it admits an inverse homomorphism; in particular, it is a bijection. Conversely, one can show a bijective module homomorphism is an isomorphism; i.e., the inverse is a module homomorphism. In particular, a module homomorphism is an isomorphism if and only if it is an isomorphism between the underlying abelian groups. The isomorphism theorems hold for module homomorphisms. A module homomorphism from a module M to itself is called an endomorphism and an isomorphism from M to itself an automorphism. One writes for the set of all endomorphisms of a module M. It is not only an abelian group but is also a ring with multiplication given by function composition, called the endomorphism ring of M. The group of units of this ring is the automorphism group of M. Schur's lemma says that a homomorphism between simple modules (modules with no non-trivial submodules) must be either zero or an isomorphism. In particular, the endomorphism ring of a simple module is a division ring. In the language of the category theory, an injective homomorphism is also called a monomorphism and a surjective homomorphism an epimorphism.

Examples

Module structures on Hom

In short, Hom inherits a ring action that was not used up to form Hom. More precise, let M, N be left R-modules. Suppose M has a right action of a ring S that commutes with the R-action; i.e., M is an (R, S)-module. Then has the structure of a left S-module defined by: for s in S and x in M, It is well-defined (i.e., s \cdot f is R-linear) since and s \cdot f is a ring action since Note: the above verification would "fail" if one used the left R-action in place of the right S-action. In this sense, Hom is often said to "use up" the R-action. Similarly, if M is a left R-module and N is an (R, S)-module, then is a right S-module by.

A matrix representation

The relationship between matrices and linear transformations in linear algebra generalizes in a natural way to module homomorphisms between free modules. Precisely, given a right R-module U, there is the canonical isomorphism of the abelian groups obtained by viewing consisting of column vectors and then writing f as an m × n matrix. In particular, viewing R as a right R-module and using, one has which turns out to be a ring isomorphism (as a composition corresponds to a matrix multiplication). Note the above isomorphism is canonical; no choice is involved. On the other hand, if one is given a module homomorphism between finite-rank free modules, then a choice of an ordered basis corresponds to a choice of an isomorphism. The above procedure then gives the matrix representation with respect to such choices of the bases. For more general modules, matrix representations may either lack uniqueness or not exist.

Defining

In practice, one often defines a module homomorphism by specifying its values on a generating set. More precisely, let M and N be left R-modules. Suppose a subset S generates M; i.e., there is a surjection F \to M with a free module F with a basis indexed by S and kernel K (i.e., one has a free presentation). Then to give a module homomorphism M \to N is to give a module homomorphism F \to N that kills K (i.e., maps K to zero).

Operations

If f: M \to N and are module homomorphisms, then their direct sum is and their tensor product is Let f: M \to N be a module homomorphism between left modules. The graph Γf of f is the submodule of M ⊕ N given by which is the image of the module homomorphism M → M ⊕ N, x → (x, f(x)), called the graph morphism. The transpose of f is If f is an isomorphism, then the transpose of the inverse of f is called the contragredient of f.

Exact sequences

Consider a sequence of module homomorphisms Such a sequence is called a chain complex (or often just complex) if each composition is zero; i.e., or equivalently the image of f_{i+1} is contained in the kernel of f_i. (If the numbers increase instead of decrease, then it is called a cochain complex; e.g., de Rham complex.) A chain complex is called an exact sequence if. A special case of an exact sequence is a short exact sequence: where f is injective, the kernel of g is the image of f and g is surjective. Any module homomorphism f : M \to N defines an exact sequence where K is the kernel of f, and C is the cokernel, that is the quotient of N by the image of f. In the case of modules over a commutative ring, a sequence is exact if and only if it is exact at all the maximal ideals; that is all sequences are exact, where the subscript means the localization at a maximal ideal. If are module homomorphisms, then they are said to form a fiber square (or pullback square), denoted by M ×B N, if it fits into where. Example: Let B \subset A be commutative rings, and let I be the annihilator of the quotient B-module A/B (which is an ideal of A). Then canonical maps form a fiber square with

Endomorphisms of finitely generated modules

Let be an endomorphism between finitely generated R-modules for a commutative ring R. Then See also: Herbrand quotient (which can be defined for any endomorphism with some finiteness conditions.)

Variant: additive relations

An additive relation M \to N from a module M to a module N is a submodule of M \oplus N. In other words, it is a "many-valued" homomorphism defined on some submodule of M. The inverse f^{-1} of f is the submodule. Any additive relation f determines a homomorphism from a submodule of M to a quotient of N where D(f) consists of all elements x in M such that (x, y) belongs to f for some y in N. A transgression that arises from a spectral sequence is an example of an additive relation.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

View original