Contents
Metachromatic leukodystrophy
Metachromatic leukodystrophy (MLD) is a lysosomal storage disease which is commonly listed in the family of leukodystrophies as well as among the sphingolipidoses as it affects the metabolism of sphingolipids. Leukodystrophies affect the growth and/or development of myelin, the fatty covering which acts as an insulator around nerve fibers throughout the central and peripheral nervous systems. MLD involves cerebroside sulfate accumulation. Metachromatic leukodystrophy, like most enzyme deficiencies, has an autosomal recessive inheritance pattern.
Signs and symptoms
Like many other genetic disorders that affect lipid metabolism, there are several forms of MLD, which are late infantile, juvenile, and adult. Palliative care can help with many of the symptoms and usually improves quality of life and longevity. Carriers have low enzyme levels compared to their family population ("normal" levels vary from family to family) but even low enzyme levels are adequate to process the body's sulfatide.
Causes
MLD is directly caused by a deficiency of the enzyme arylsulfatase A (ARSA) and is characterized by enzyme activity in leukocytes that is less than 10% of normal controls. However, assay of the ARSA enzyme activity alone is not sufficient for diagnosis; ARSA pseudodeficiency, which is characterized by enzyme activity that is 5~20% of normal controls does not cause MLD. Without this enzyme, sulfatides build up in many tissues of the body, eventually destroying the myelin sheath of the nervous system. The myelin sheath is a fatty covering that protects nerve fibers. Without it, the nerves in the brain (central nervous system – CNS) and the peripheral nerves (peripheral nervous system – PNS) which control, among other things the muscles related to mobility, cease to function properly. Arylsulfatase A is activated by saposin B (Sap B), a non-enzymatic proteinaceous cofactor. When the arylsulfatase A enzyme level is normal but the sulfatides are still high – meaning that they are not being broken down because the enzyme is not activated – the resulting disease is saposin B deficiency, which presents similar to MLD. Saposin B Deficiency is very rare, much more rare than traditional MLD. The enzyme that is present is not "enabled" to a normal level of efficiency and can't break down the sulfatides which results in all of the same MLD symptoms and progression. A 2011 study contended sulfatide is not completely responsible for MLD because it is nontoxic. It has been suggested lysosulfatide, sulfatide which has had its acyl group removed, plays a role because of its cytotoxic properties in vitro.
Genetics
MLD has an autosomal recessive inheritance pattern. The inheritance probabilities per birth are as follows: In addition to these frequencies there is a 'pseudo'-deficiency that affects 7–15% of the population. People with the pseudo deficiency do not have any MLD problems unless they also have affected status. With the current diagnostic tests, Pseudo-deficiency reports as low enzyme levels but sulfatide is processed normally so MLD symptoms do not exist. This phenomenon wreaks havoc with traditional approaches to Newborn Screening so new screening methods are being developed.
Diagnosis
Clinical examination and MRI are often the first steps in an MLD diagnosis. MRI can be indicative of MLD but is not adequate as a confirming test. An ARSA-A enzyme level blood test with a confirming urinary sulfatide test is the best biochemical test for MLD. The confirming urinary sulfatide is important to distinguish between MLD and pseudo-MLD blood results. Genomic sequencing may also confirm MLD, however, there are likely more mutations than the over 200 already known to cause MLD that are not yet ascribed to MLD that cause MLD so in those cases a biochemical test is still warranted.
Newborn screening
MLD Foundation formally launched a newborn screening initiative in late 2017. The screen development started in the early 2010s at the University of Washington, by professor Michael H. Gelb. A deidentified pilot study launched in April 2016 in Washington state. Positive results led to MLD being included in the ScreenPlus identified baby research project in New York state, which is currently scheduled to launch in Q1'2021.
Treatment
There is currently no approved treatment for MLD in symptomatic late infantile patients or for juvenile and adult-onset with advanced symptoms. There is a treatment for pre-symptomatic patients and certain others with the condition. Symptomatic patients typically receive clinical treatment focused on pain and symptom management.Pre-symptomatic late infantile MLD patients, as well as those with juvenile or adult MLD that are either presymptomatic or displaying mild symptoms, can consider bone marrow transplantation (including stem cell transplantation), which may slow down the progression of the disease in the central nervous system. However, results in the peripheral nervous system have been less dramatic, and the long-term results of these therapies have been mixed. In 2020 the European Medical Agency, approved the cell therapy drug atidarsagene autotemcel (Libmeldy) for the treatment of infantile and juvenile forms of metachromatic leukodystrophy in Europe. In 2024 the US Food and Drug Administration (FDA) approved atidarsagene autotemcel (Lenmeldy) for use with pre-symptomatic late infantile, pre-symptomatic early juvenile or early symptomatic juvenile metachromatic leukodystrophy. Presymptomatic patients can be cured with one treatment of atidarsagene autotemcel, which is a type of advanced medicine called a ‘gene therapy’. This type of medicine works by delivering genes into the body. The active substance in atidarsagene autotemcel is CD34+ stem cells. They are retrieved from the patient's own bone marrow or blood. They are then modified to contain a copy of the gene to make functional ARSA. After confirming that the cells contain an active copy of the gene, they are injected into the patient's bone marrow. CD34+ cells can divide to produce other sorts of blood cells.
Research directions
Several therapy options are currently being investigated using clinical trials primarily in late infantile patients. These therapies include gene therapy, enzyme replacement therapy (ERT), substrate reduction therapy (SRT), and potentially enzyme enhancement therapy (EET). In addition to the clinical trials, there are several other pre-clinical gene therapy research projects underway.
Epidemiology
The incidence of metachromatic leukodystrophy is estimated to occur in 1 in 40,000 to 1 in 160,000 individuals worldwide. There is a much higher incidence in certain genetically isolated populations, such as 1 in 75 in Habbanites (a small group of Jews who immigrated to Israel from southern Arabia), 1 in 2,500 in the western portion of the Navajo Nation, and 1 in 8,000 among Arab groups in Israel. As an autosomal recessive disease, 1 in 40,000 equates to a 1 in 100 carrier frequency in the general population. In the US, there are an estimated 3,600 MLD births per year, with 1,900 alive; in Europe 3,100, and worldwide 49,000 alive. MLD is considered a rare disease in the US and other countries.
Research
Bone marrow and stem cell transplant therapies
Gene therapy
(current as of April 2021) Two different approaches to gene therapy are currently being researched for MLD.
Enzyme replacement therapy (ERT)
(current as of February 2021)
Substrate reduction therapy
Natural history studies
Metazym drug studies
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.