Matrix ring

1

In abstract algebra, a matrix ring is a set of matrices with entries in a ring R that form a ring under matrix addition and matrix multiplication. The set of all n × n matrices with entries in R is a matrix ring denoted Mn(R) (alternative notations: Matn(R) and Rn×n). Some sets of infinite matrices form infinite matrix rings. A subring of a matrix ring is again a matrix ring. Over a rng, one can form matrix rngs. When R is a commutative ring, the matrix ring Mn(R) is an associative algebra over R, and may be called a matrix algebra. In this setting, if M is a matrix and r is in R, then the matrix rM is the matrix M with each of its entries multiplied by r.

Examples

Structure

Properties

Matrix semiring

In fact, R needs to be only a semiring for Mn(R) to be defined. In this case, Mn(R) is a semiring, called the matrix semiring. Similarly,**** if**** R is**** a commutative semiring****,**** then**** Mn****(R)**** is**** a . For example, if R is the Boolean semiring (the two-element Boolean algebra R = with 1 + 1 = 1), then Mn(R) is the semiring of binary relations on an n-element set with union as addition, composition of relations as multiplication, the empty relation (zero matrix) as the zero, and the identity relation (identity matrix) as the unity.

Citations

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article