Magnetic vector potential

1

In classical electromagnetism, magnetic vector potential (often called A) is the vector quantity defined so that its curl is equal to the magnetic field:. Together with the electric potential φ, the magnetic vector potential can be used to specify the electric field E as well. Therefore, many equations of electromagnetism can be written either in terms of the fields E and B, or equivalently in terms of the potentials φ and A. In more advanced theories such as quantum mechanics, most equations use potentials rather than fields. Magnetic vector potential was independently introduced by Franz Ernst Neumann and Wilhelm Eduard Weber in 1845 and in 1846, respectively to discuss Ampère's circuital law. William Thomson also introduced the modern version of the vector potential in 1847, along with the formula relating it to the magnetic field.

Unit conventions

This article uses the SI system. In the [SI system](https://bliptext.com/articles/si-system), the units of A are V·s·m−1 and are the same as that of momentum per unit charge, or force per unit current.

Magnetic vector potential

The magnetic vector potential, \mathbf{A}, is a vector field, and the electric potential, \phi, is a scalar field such that: where \mathbf{B} is the magnetic field and \mathbf{E} is the electric field. In magnetostatics where there is no time-varying current or charge distribution, only the first equation is needed. (In the context of electrodynamics, the terms vector potential and scalar potential are used for magnetic vector potential and electric potential, respectively. In mathematics, vector potential and scalar potential can be generalized to higher dimensions.) If electric and magnetic fields are defined as above from potentials, they automatically satisfy two of Maxwell's equations: Gauss's law for magnetism and Faraday's law. For example, if \mathbf{A} is continuous and well-defined everywhere, then it is guaranteed not to result in magnetic monopoles. (In the mathematical theory of magnetic monopoles, \mathbf{A} is allowed to be either undefined or multiple-valued in some places; see magnetic monopole for details). Starting with the above definitions and remembering that the divergence of the curl is zero and the curl of the gradient is the zero vector: Alternatively, the existence of \mathbf{A} and \phi is guaranteed from these two laws using Helmholtz's theorem. For example, since the magnetic field is divergence-free (Gauss's law for magnetism; i.e., ), \mathbf{A} always exists that satisfies the above definition. The vector potential \mathbf{A} is used when studying the Lagrangian in classical mechanics and in quantum mechanics (see Schrödinger equation for charged particles, Dirac equation, Aharonov–Bohm effect). In minimal coupling, is called the potential momentum, and is part of the canonical momentum. The line integral of \mathbf{A} over a closed loop, \Gamma, is equal to the magnetic flux,, through a surface, S, that it encloses: Therefore, the units of \mathbf{A} are also equivalent to weber per metre. The above equation is useful in the flux quantization of superconducting loops. Although the magnetic field, \mathbf{B}, is a pseudovector (also called axial vector), the vector potential, \mathbf{A}, is a polar vector. This means that if the right-hand rule for cross products were replaced with a left-hand rule, but without changing any other equations or definitions, then \mathbf{B} would switch signs, but A would not change. This is an example of a general theorem: The curl of a polar vector is a pseudovector, and vice versa.

Gauge choices

The above definition does not define the magnetic vector potential uniquely because, by definition, we can arbitrarily add curl-free components to the magnetic potential without changing the observed magnetic field. Thus, there is a degree of freedom available when choosing \mathbf{A}. This condition is known as gauge invariance. Two common gauge choices are

Lorenz gauge

In other gauges, the formulas for \mathbf{A} and \phi are different; for example, see Coulomb gauge for another possibility.

Time domain

Using the above definition of the potentials and applying it to the other two Maxwell's equations (the ones that are not automatically satisfied) results in a complicated differential equation that can be simplified using the Lorenz gauge where \mathbf{A} is chosen to satisfy: Using the Lorenz gauge, the electromagnetic wave equations can be written compactly in terms of the potentials, The solutions of Maxwell's equations in the Lorenz gauge (see Feynman and Jackson ) with the boundary condition that both potentials go to zero sufficiently fast as they approach infinity are called the retarded potentials, which are the magnetic vector potential and the electric scalar potential due to a current distribution of current density, charge density , and volume \Omega, within which \rho and \mathbf{J} are non-zero at least sometimes and some places): where the fields at position vector \mathbf{r} and time t are calculated from sources at distant position \mathbf{r}' at an earlier time t'. The location \mathbf{r}' is a source point in the charge or current distribution (also the integration variable, within volume \Omega). The earlier time t' is called the retarded time, and calculated as

Time-domain notes

Frequency domain

The preceding time domain equations can be expressed in the frequency domain. where

Frequency domain notes

There are a few notable things about \mathbf{A} and \phi calculated in this way:

Depiction of the A-field

See Feynman for the depiction of the \mathbf{A} field around a long thin solenoid. Since assuming quasi-static conditions, i.e. the lines and contours of relate to like the lines and contours of \mathbf{B} relate to Thus, a depiction of the \mathbf{A} field around a loop of \mathbf{B} flux (as would be produced in a toroidal inductor) is qualitatively the same as the \mathbf{B} field around a loop of current. The figure to the right is an artist's depiction of the \mathbf{A} field. The thicker lines indicate paths of higher average intensity (shorter paths have higher intensity so that the path integral is the same). The lines are drawn to (aesthetically) impart the general look of the \mathbf{A} field. The drawing tacitly assumes, true under any one of the following assumptions:

Electromagnetic four-potential

In the context of special relativity, it is natural to join the magnetic vector potential together with the (scalar) electric potential into the electromagnetic potential, also called four-potential. One motivation for doing so is that the four-potential is a mathematical four-vector. Thus, using standard four-vector transformation rules, if the electric and magnetic potentials are known in one inertial reference frame, they can be simply calculated in any other inertial reference frame. Another, related motivation is that the content of classical electromagnetism can be written in a concise and convenient form using the electromagnetic four potential, especially when the Lorenz gauge is used. In particular, in abstract index notation, the set of Maxwell's equations (in the Lorenz gauge) may be written (in Gaussian units) as follows: where \ \Box^2\ is the d'Alembertian and \ J\ is the four-current. The first equation is the Lorenz gauge condition while the second contains Maxwell's equations. The four-potential also plays a very important role in quantum electrodynamics.

Charged particle in a field

In a field with electric potential \ \phi\ and magnetic potential, the Lagrangian and the Hamiltonian of a particle with mass \ m\ and charge \ q\ are

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article