Lightest supersymmetric particle

1

In particle physics, the lightest supersymmetric particle (LSP) is the generic name given to the lightest of the additional hypothetical particles found in supersymmetric models. In models with R-parity conservation, the LSP is stable; in other words, it cannot decay into any Standard Model particle, since all SM particles have the opposite R-parity. There is extensive observational evidence for an additional component of the matter density in the universe, which goes under the name dark matter. The LSP of supersymmetric models is a dark matter candidate and is a weakly interacting massive particle (WIMP).

Constraints on LSP from cosmology

The LSP is unlikely to be a charged wino, charged higgsino, slepton, sneutrino, gluino, squark, or gravitino but is most likely a mixture of neutral higgsinos, the bino and the neutral winos, i.e. a neutralino. In particular, if the LSP were charged (and is abundant in our galaxy) such particles would have been captured by the Earth's magnetic field and form heavy hydrogen-like atoms. Searches for anomalous hydrogen in natural water however have been without any evidence for such particles and thus put severe constraints on the existence of a charged LSP.

As a dark matter candidate

Dark matter particles must be electrically neutral; otherwise they would scatter light and thus not be "dark". They must also almost certainly be non-colored. With these constraints, the LSP could be the lightest neutralino, the gravitino, or the lightest sneutrino. In extra-dimensional theories, there are analogous particles called LKPs or Lightest Kaluza–Klein Particle. These are the stable particles of extra-dimensional theories.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

View original