Contents
Kruskal–Katona theorem
In algebraic combinatorics, the Kruskal–Katona theorem gives a complete characterization of the f-vectors of abstract simplicial complexes. It includes as a special case the Erdős–Ko–Rado theorem and can be restated in terms of uniform hypergraphs. It is named after Joseph Kruskal and Gyula O. H. Katona, but has been independently discovered by several others.
Statement
Given two positive integers N and i, there is a unique way to expand N as a sum of binomial coefficients as follows: This expansion can be constructed by applying the greedy algorithm: set ni to be the maximal n such that replace N with the difference, i with i − 1, and repeat until the difference becomes zero. Define
Statement for simplicial complexes
An integral vector is the f-vector of some (d-1)-dimensional simplicial complex if and only if
Statement for uniform hypergraphs
Let A be a set consisting of N distinct i-element subsets of a fixed set U ("the universe") and B be the set of all (i-r)-element subsets of the sets in A. Expand N as above. Then the cardinality of B is bounded below as follows:
Lovász' simplified formulation
The following weaker but useful form is due to. Let A be a set of i-element subsets of a fixed set U ("the universe") and B be the set of all (i-r)-element subsets of the sets in A. If then. In this formulation, x need not be an integer. The value of the binomial expression is.
Ingredients of the proof
For every positive i, list all i-element subsets a1 < a2 < … ai of the set N of natural numbers in the colexicographical order. For example, for i = 3, the list begins Given a vector with positive integer components, let Δf be the subset of the power set 2N consisting of the empty set together with the first f_{i-1} i-element subsets of N in the list for i = 1, …, d. Then the following conditions are equivalent: The difficult implication is 1 ⇒ 2.
History
The theorem is named after Joseph Kruskal and Gyula O. H. Katona, who published it in 1963 and 1968 respectively. According to, it was discovered independently by , , , , and. writes that the earliest of these references, by Schützenberger, has an incomplete proof.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.