Isomorphism of categories

1

In category theory, two categories C and D are isomorphic if there exist functors F : C → D and G : D → C that are mutually inverse to each other, i.e. FG = 1D (the identity functor on D) and GF = 1C. This means that both the objects and the morphisms of C and D stand in a one-to-one correspondence to each other. Two isomorphic categories share all properties that are defined solely in terms of category theory; for all practical purposes, they are identical and differ only in the notation of their objects and morphisms. Isomorphism of categories is a very strong condition and rarely satisfied in practice. Much more important is the notion of equivalence of categories; roughly speaking, for an equivalence of categories we don't require that FG be equal to 1_D, but only naturally isomorphic to 1_D, and likewise that GF be naturally isomorphic to 1_C.

Properties

As is true for any notion of isomorphism, we have the following general properties formally similar to an equivalence relation: A functor F : C → D yields an isomorphism of categories if and only if it is bijective on objects and on morphism sets. This criterion can be convenient as it avoids the need to construct the inverse functor G.

Examples

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article