Inada conditions

1

In macroeconomics, the Inada conditions, named after Japanese economist Ken-Ichi Inada, are assumptions about the shape of a function, usually applied to a production function or a utility function. When the production function of a neoclassical growth model satisfies the Inada conditions, then it guarantees the stability of an economic growth path. The conditions as such had been introduced by Hirofumi Uzawa.

Statement

Given a continuously differentiable function, where and , the conditions are:

Consequences

The elasticity of substitution between goods is defined for the production function as, where is the marginal rate of technical substitution. It can be shown that the Inada conditions imply that the elasticity of substitution between components is asymptotically equal to one (although the production function is not necessarily asymptotically Cobb–Douglas, a commonplace production function for which this condition holds). In stochastic neoclassical growth model, if the production function does not satisfy the Inada condition at zero, any feasible path converges to zero with probability one provided that the shocks are sufficiently volatile.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

View original