Hyperplasia

1

Hyperplasia (from ancient Greek ὑπέρ huper 'over' + πλάσις plasis 'formation'), or hypergenesis, is an enlargement of an organ or tissue caused by an increase in the amount of organic tissue that results from cell proliferation. It may lead to the gross enlargement of an organ, and the term is sometimes confused with benign neoplasia or benign tumor. Hyperplasia is a common preneoplastic response to stimulus. Microscopically, cells resemble normal cells but are increased in numbers. Sometimes cells may also be increased in size (hypertrophy). Hyperplasia is different from hypertrophy in that the adaptive cell change in hypertrophy is an increase in the size of cells, whereas hyperplasia involves an increase in the number of cells.

Causes

Hyperplasia may be due to any number of causes, including proliferation of basal layer of epidermis to compensate skin loss, chronic inflammatory response, hormonal dysfunctions, or compensation for damage or disease elsewhere. Hyperplasia may be harmless and occur on a particular tissue. An example of a normal hyperplastic response would be the growth and multiplication of milk-secreting glandular cells in the breast as a response to pregnancy, thus preparing for future breast feeding. Perhaps the most interesting and potent effect insulin-like growth factor 1 (IGF) has on the human body is its ability to cause hyperplasia, which is an actual splitting of cells. By contrast, hypertrophy is what occurs, for example, to skeletal muscle cells during weight training and is simply an increase in the size of the cells. With IGF use, one is able to cause hyperplasia which actually increases the number of muscle cells present in the tissue. Weight training enables these new cells to mature in size and strength. It is theorized that hyperplasia may also be induced through specific power output training for athletic performance, thus increasing the number of muscle fibers instead of increasing the size of a single fiber.

Mechanism

Hyperplasia is considered to be a physiological (normal) response to a specific stimulus, and the cells of a hyperplastic growth remain subject to normal regulatory control mechanisms. However, hyperplasia can also occur as a pathological response, if an excess of hormone or growth factor is responsible for the stimuli. Similarly to physiological hyperplasia, cells that undergo pathologic hyperplasia are controlled by growth hormones, and cease to proliferate if such stimuli are removed. This differs from neoplasia (the process underlying cancer and benign tumors), in which genetically abnormal cells manage to proliferate in a non-physiological manner which is unresponsive to normal stimuli. That being said, the effects caused by pathologic hyperplasia can provide a suitable foundation from which neoplastic cells may develop.

Role in disease

Hyperplasia of certain tissues may cause disease. Pathologic hyperplasia in these tissues may occur due to infection, physiological stress or trauma, or abnormal levels of particular hormones, such as estrogen, ACTH, or cortisol.

Types

Some of the more commonly known clinical forms of hyperplasia, or conditions leading to hyperplasia, include:

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article