How to Solve It

1

How to Solve It (1945) is a small volume by mathematician George Pólya, describing methods of problem solving. This book has remained in print continually since 1945.

Four principles

How to Solve It suggests the following steps when solving a mathematical problem: If this technique fails, Pólya advises: "If you cannot solve the proposed problem, try to solve first some related problem. Could you imagine a more accessible related problem?"

First principle: Understand the problem

"Understand the problem" is often neglected as being obvious and is not even mentioned in many mathematics classes. Yet students are often stymied in their efforts to solve it, simply because they don't understand it fully, or even in part. In order to remedy this oversight, Pólya taught teachers how to prompt each student with appropriate questions, depending on the situation, such as: The teacher is to select the question with the appropriate level of difficulty for each student to ascertain if each student understands at their own level, moving up or down the list to prompt each student, until each one can respond with something constructive.

Second principle: Devise a plan

Pólya mentions that there are many reasonable ways to solve problems. The skill at choosing an appropriate strategy is best learned by solving many problems. You will find choosing a strategy increasingly easy. A partial list of strategies is included: Also suggested: Pólya lays a big emphasis on the teachers' behavior. A teacher should support students with devising their own plan with a question method that goes from the most general questions to more particular questions, with the goal that the last step to having a plan is made by the student. He maintains that just showing students a plan, no matter how good it is, does not help them.

Third principle: Carry out the plan

This step is usually easier than devising the plan. In general, all you need is care and patience, given that you have the necessary skills. Persist with the plan that you have chosen. If it continues not to work, discard it and choose another. Don't be misled; this is how mathematics is done, even by professionals.

Fourth principle: Review/extend

Pólya mentions that much can be gained by taking the time to reflect and look back at what you have done, what worked and what did not, and with thinking about other problems where this could be useful. Doing this will enable you to predict what strategy to use to solve future problems, if these relate to the original problem.

Heuristics

The book contains a dictionary-style set of heuristics, many of which have to do with generating a more accessible problem. For example:

Influence

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article