Hermitian function

1

In mathematical analysis, a Hermitian function is a complex function with the property that its complex conjugate is equal to the original function with the variable changed in sign: (where the ^* indicates the complex conjugate) for all x in the domain of f. In physics, this property is referred to as PT symmetry. This definition extends also to functions of two or more variables, e.g., in the case that f is a function of two variables it is Hermitian if for all pairs (x_1, x_2) in the domain of f. From this definition it follows immediately that: f is a Hermitian function if and only if

Motivation

Hermitian functions appear frequently in mathematics, physics, and signal processing. For example, the following two statements follow from basic properties of the Fourier transform: Since the Fourier transform of a real signal is guaranteed to be Hermitian, it can be compressed using the Hermitian even/odd symmetry. This, for example, allows the discrete Fourier transform of a signal (which is in general complex) to be stored in the same space as the original real signal. Where the \star is cross-correlation, and * is convolution.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article