Contents
Heptagonal number
A heptagonal number is a figurate number that is constructed by combining heptagons with ascending size. The n-th heptagonal number is given by the formula The first few heptagonal numbers are:
Parity
The parity of heptagonal numbers follows the pattern odd-odd-even-even. Like square numbers, the digital root in base 10 of a heptagonal number can only be 1, 4, 7 or 9. Five times a heptagonal number, plus 1 equals a triangular number.
Additional properties
Sum of reciprocals
A formula for the sum of the reciprocals of the heptagonal numbers is given by: with golden ratio.
Heptagonal roots
In analogy to the square root of x, one can calculate the heptagonal root of x, meaning the number of terms in the sequence up to and including x. The heptagonal root of x is given by the formula which is obtained by using the quadratic formula to solve for its unique positive root n.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.