Harrop formula

1

In intuitionistic logic, the Harrop formulae, named after Ronald Harrop, are the class of formulae inductively defined as follows: By excluding disjunction and existential quantification (except in the antecedent of implication), non-constructive predicates are avoided, which has benefits for computer implementation.

Discussion

Harrop formulae are "well-behaved" also in a constructive context. For example, in Heyting arithmetic, Harrop formulae satisfy a classical equivalence not generally satisfied in constructive logic: There are however \Pi 1-statements that are -independent, meaning these are simple statements for which excluded middle is not -provable. Indeed, while intuitionistic logic proves for any P, the disjunction will not be Harrop.

Hereditary Harrop formulae and logic programming

A more complex definition of hereditary Harrop formulae is used in logic programming as a generalisation of Horn clauses, and forms the basis for the language λProlog. Hereditary Harrop formulae are defined in terms of two (sometimes three) recursive sets of formulae. In one formulation: G-formulae are defined as follows:

History

Harrop formulae were introduced around 1956 by Ronald Harrop and independently by Helena Rasiowa. Variations of the fundamental concept are used in different branches of constructive mathematics and logic programming.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article