Fréchet manifold

1

In mathematics, in particular in nonlinear analysis, a Fréchet manifold is a topological space modeled on a Fréchet space in much the same way as a manifold is modeled on a Euclidean space. More precisely, a Fréchet manifold consists of a Hausdorff space X with an atlas of coordinate charts over Fréchet spaces whose transitions are smooth mappings. Thus X has an open cover and a collection of homeomorphisms onto their images, where F_{\alpha} are Fréchet spaces, such that is smooth for all pairs of indices

Classification up to homeomorphism

It is by no means true that a finite-dimensional manifold of dimension n is homeomorphic to \R^n or even an open subset of \R^n. However, in an infinite-dimensional setting, it is possible to classify "well-behaved" Fréchet manifolds up to homeomorphism quite nicely. A 1969 theorem of David Henderson states that every infinite-dimensional, separable, metric Fréchet manifold X can be embedded as an open subset of the infinite-dimensional, separable Hilbert space, H (up to linear isomorphism, there is only one such space). The embedding homeomorphism can be used as a global chart for X. Thus, in the infinite-dimensional, separable, metric case, up to homeomorphism, the "only" topological Fréchet manifolds are the open subsets of the separable infinite-dimensional Hilbert space. But in the case of or Fréchet manifolds (up to the appropriate notion of diffeomorphism) this fails.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article