Fort space

1

In mathematics, there are a few topological spaces named after M. K. Fort, Jr.

Fort space

Fort space is defined by taking an infinite set X, with a particular point p in X, and declaring open the subsets A of X such that: The subspace has the discrete topology and is open and dense in X. The space X is homeomorphic to the one-point compactification of an infinite discrete space.

Modified Fort space

Modified Fort space is similar but has two particular points. So take an infinite set X with two distinct points p and q, and declare open the subsets A of X such that: The space X is compact and T1, but not Hausdorff.

Fortissimo space

Fortissimo space is defined by taking an uncountable set X, with a particular point p in X, and declaring open the subsets A of X such that: The subspace has the discrete topology and is open and dense in X. The space X is not compact, but it is a Lindelöf space. It is obtained by taking an uncountable discrete space, adding one point and defining a topology such that the resulting space is Lindelöf and contains the original space as a dense subspace. Similarly to Fort space being the one-point compactification of an infinite discrete space, one can describe Fortissimo space as the one-point Lindelöfication of an uncountable discrete space.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article