Contents
Divided power structure
In mathematics, specifically commutative algebra, a divided power structure is a way of introducing items with similar properties as expressions of the form x^n / n! have, also when it is not possible to actually divide by n!.
Definition
Let A be a commutative ring with an ideal I. A divided power structure (or PD-structure, after the French puissances divisées) on I is a collection of maps for n = 0, 1, 2, ... such that: For convenience of notation, \gamma_n(x) is often written as x^{[n]} when it is clear what divided power structure is meant. The term divided power ideal refers to an ideal with a given divided power structure, and divided power ring refers to a ring with a given ideal with divided power structure. Homomorphisms of divided power algebras are ring homomorphisms that respects the divided power structure on its source and target.
Examples
Constructions
If A is any ring, there exists a divided power ring consisting of divided power polynomials in the variables that is sums of divided power monomials of the form with c \in A. Here the divided power ideal is the set of divided power polynomials with constant coefficient 0. More generally, if M is an A-module, there is a universal A-algebra, called with PD ideal and an A-linear map (The case of divided power polynomials is the special case in which M is a free module over A of finite rank.) If I is any ideal of a ring A, there is a universal construction which extends A with divided powers of elements of I to get a divided power envelope of I in A.
Applications
The divided power envelope is a fundamental tool in the theory of PD differential operators and crystalline cohomology, where it is used to overcome technical difficulties which arise in positive characteristic. The divided power functor is used in the construction of co-Schur functors.
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.