Contents
Differintegral
In fractional calculus, an area of mathematical analysis, the differintegral is a combined differentiation/integration operator. Applied to a function ƒ, the q-differintegral of f, here denoted by is the fractional derivative (if q > 0) or fractional integral (if q < 0). If q = 0, then the q-th differintegral of a function is the function itself. In the context of fractional integration and differentiation, there are several definitions of the differintegral.
Standard definitions
The four most common forms are:
Definitions via transforms
The definitions of fractional derivatives given by Liouville, Fourier, and Grunwald and Letnikov coincide. They can be represented via Laplace, Fourier transforms or via Newton series expansion. Recall the continuous Fourier transform, here denoted \mathcal{F}: Using the continuous Fourier transform, in Fourier space, differentiation transforms into a multiplication: So, which generalizes to Under the bilateral Laplace transform, here denoted by \mathcal{L} and defined as, differentiation transforms into a multiplication Generalizing to arbitrary order and solving for, one obtains Representation via Newton series is the Newton interpolation over consecutive integer orders: For fractional derivative definitions described in this section, the following identities hold:
Basic formal properties
In general, composition (or semigroup) rule is a desirable property, but is hard to achieve mathematically and hence is not always completely satisfied by each proposed operator; this forms part of the decision making process on which one to choose:
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.