Cubic form

1

In mathematics, a cubic form is a homogeneous polynomial of degree 3, and a cubic hypersurface is the zero set of a cubic form. In the case of a cubic form in three variables, the zero set is a cubic plane curve. In, Boris Delone and Dmitry Faddeev showed that binary cubic forms with integer coefficients can be used to parametrize orders in cubic fields. Their work was generalized in to include all **cubic ring**s (a cubic ring is a ring that is isomorphic to Z3 as a Z-module), giving a discriminant-preserving bijection between orbits of a GL(2, Z)-action on the space of integral binary cubic forms and **cubic ring**s up to isomorphism. The classification of real cubic forms is linked to the classification of umbilical points of surfaces. The equivalence classes of such cubics form a three-dimensional real projective space and the subset of parabolic forms define a surface – the umbilic torus.

Examples

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

View original