Correlation immunity

1

In mathematics, the correlation immunity of a Boolean function is a measure of the degree to which its outputs are uncorrelated with some subset of its inputs. Specifically, a Boolean function is said to be correlation-immune of order m if every subset of m or fewer variables in is statistically independent of the value of.

Definition

A function is k-th order correlation immune if for any independent n binary random variables, the random variable is independent from any random vector with.

Results in cryptography

When used in a stream cipher as a combining function for linear feedback shift registers, a Boolean function with low-order correlation-immunity is more susceptible to a correlation attack than a function with correlation immunity of high order. Siegenthaler showed that the correlation immunity m of a Boolean function of algebraic degree d of n variables satisfies m + d ≤ n; for a given set of input variables, this means that a high algebraic degree will restrict the maximum possible correlation immunity. Furthermore, if the function is balanced then m + d ≤ n − 1.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

Edit article