Continuous functions on a compact Hausdorff space

1

In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space X with values in the real or complex numbers. This space, denoted by is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined by the uniform norm. The uniform norm defines the topology of uniform convergence of functions on X. The space is a Banach algebra with respect to this norm.

Properties

Generalizations

The space C(X) of real or complex-valued continuous functions can be defined on any topological space X. In the non-compact case, however, C(X) is not in general a Banach space with respect to the uniform norm since it may contain unbounded functions. Hence it is more typical to consider the space, denoted here C_B(X) of bounded continuous functions on X. This is a Banach space (in fact a commutative Banach algebra with identity) with respect to the uniform norm. It is sometimes desirable, particularly in measure theory, to further refine this general definition by considering the special case when X is a locally compact Hausdorff space. In this case, it is possible to identify a pair of distinguished subsets of C_B(X): The closure of C_{00}(X) is precisely C_0(X). In particular, the latter is a Banach space.

This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.

Wikipedia® is a registered trademark of the Wikimedia Foundation, Inc.
Bliptext is not affiliated with or endorsed by Wikipedia or the Wikimedia Foundation.

View original