Contents
Bretschneider's formula
In geometry, Bretschneider's formula is a mathematical expression for the area of a general quadrilateral. It works on both convex and concave quadrilaterals, whether it is cyclic or not. The formula also works on crossed quadrilaterals provided that directed angles are used.
History
The German mathematician Carl Anton Bretschneider discovered the formula in 1842. The formula was also derived in the same year by the German mathematician Karl Georg Christian von Staudt.
Formulation
Bretschneider's formula is expressed as: Here, a , b , c , d are the sides of the quadrilateral, s is the semiperimeter, and α and γ are any two opposite angles, since as long as directed angles are used so that or (when the quadrilateral is crossed).
Proof
Denote the area of the quadrilateral by K . Then we have Therefore The law of cosines implies that because both sides equal the square of the length of the diagonal BD . This can be rewritten as Adding this to the above formula for 4K2 yields Note that: (a trigonometric identity true for all ) Following the same steps as in Brahmagupta's formula, this can be written as Introducing the semiperimeter the above becomes and Bretschneider's formula follows after taking the square root of both sides: The second form is given by using the cosine half-angle identity yielding Emmanuel García has used the generalized half angle formulas to give an alternative proof.
Related formulae
Bretschneider's formula generalizes Brahmagupta's formula for the area of a cyclic quadrilateral, which in turn generalizes Heron's formula for the area of a triangle. The trigonometric adjustment in Bretschneider's formula for non-cyclicality of the quadrilateral can be rewritten non-trigonometrically in terms of the sides and the diagonals e and f to give
References & further reading
This article is derived from Wikipedia and licensed under CC BY-SA 4.0. View the original article.
Wikipedia® is a registered trademark of the
Wikimedia Foundation, Inc.
Bliptext is not
affiliated with or endorsed by Wikipedia or the
Wikimedia Foundation.